HANDS ON.

2006-2007 Catalog

www.vtc.edu
Contents

2006-2007 Academic Calendar 4
General Information 8
Admissions ... 20
Academic Affairs 29
Student Affairs 46
Tuition & Fees 2006-2007 50
Financial Aid 60
Career & Transfer Opportunities 66
Associate’s and Bachelor’s Degree Programs 70
General Education Electives 126
Course Descriptions 132
VSC Board of Trustees 209
Staff and Faculty 210
Advisory Committees 221
Index .. 233

Photo credit for cover artwork and photography throughout to Bob Eddy and Tim Calabro.
Photo credit for other pictures to Skye Chalmers and Jeb Wallace-Brodeur.
Vermont Technical College

Catalog 2006-2007

Bachelor of Science
- Architectural Engineering Technology
- Business Technology and Management
- Computer Engineering Technology
- Computer Information Technology
- Computer Software Engineering
- Electromechanical Engineering Technology

Associate of Applied Science
- Agribusiness Management Technology
- Applied Technology
- Architectural and Building Engineering Technology
- Automotive Technology
- Business Technology & Management
- Construction Practice and Management
- Dairy Farm Management Technology
- Diesel Power Technology
- General Engineering Technology
- Landscape Development and Ornamental Horticulture
- Telecommunications Technology
- Veterinary Technology

Associate of Science
- Computer Information Technology
- Computer Software Engineering
- Dental Hygiene
- Nursing
- Respiratory Therapy

Associate of Engineering
- Aeronautical Engineering Technology
- Civil and Environmental Engineering Technology
- Computer Engineering Technology
- Electrical Engineering Technology
- Mechanical Engineering Technology

Certificate
- Practical Nursing
Foreward

This catalog has been prepared to give prospective students at Vermont Technical College a comprehensive preview of the college, its entrance requirements, programs offered, grading system—in short, a complete picture.

The college recommends that prospective students and their parents make full use of the guidance services offered by their high school. Prospective students who do not have access to high school guidance services can find assistance at the college. Successful applicants for admission should retain a copy of this catalog for future reference.

While the information contained in this catalog was accurate at the time of printing, it is subject to change without notice. For the most current information, refer to the Vermont Tech website at www.vtc.edu.

Notice of College Regulations

The information contained in this catalog is current at the time of publication and subject to change at any time. The regulations included in this catalog and other official college statements are binding on all students. The college reserves the right to change any of the regulations at any time. Students will be deemed to have had sufficient notice of all official regulations when such are contained in official publications or posted on the college’s web site, www.vtc.edu.

Should you have questions not answered in this catalog, please write to:

Office of Admissions
Vermont Technical College
PO Box 500
Randolph Center, VT 05061-0500

or email admissions@vtc.edu

Office Hours: 8 a.m.-4:30 p.m., Monday-Friday, except holidays.

Telephone: (802) 728-1242 or 728-1243 (voice/TDD);
or toll-free (Admissions Office only), 1-800-442-8821
(voice/TDD). Fax: (802) 728-1390
Non-discrimination and Equal Opportunity Statement

Every member of Vermont Technical College should work to ensure non-discriminatory processes and practices with faculty, staff and students. Qualified students are recruited for, admitted to, and participate in all college programs without discrimination on the basis of race, color, sex, sexual orientation, religion, creed, national origin, age, veteran status, or disability. Vermont Tech will provide reasonable accommodations to create equal opportunity for students with documented disabilities.

Faculty, administrators, and staff are employed without discrimination on the basis of race, color, sex, sexual orientation, religion, creed, national origin, age, veteran status, or disability unrelated to job requirements. Vermont Tech will make reasonable accommodations to the known disability of an otherwise qualified applicant or employee.

Additionally, the Vermont State Colleges will engage in affirmative efforts to recruit, admit, and support students and to recruit, employ, and support employees in order to achieve the diversity which advances the educational mission.

The Vermont State Colleges complies with state and federal laws related to equal opportunity and non-discrimination. Any questions or complaints about potential or perceived discrimination in violation of any state or federal law should be directed to: Ombudsperson, Vermont Technical College; the Vermont State Colleges Office of the Chancellor in Waterbury; the Vermont Office of the Attorney General; or the Equal Opportunity Employment Commission in Washington, D.C.

If auxiliary aid or service is needed to apply for admission or employment, please contact Vermont Tech’s Learning Skills Specialist at 728-1396. For questions related to Title IX, please contact Michael Van Dyke, Dean of the college and Title IX coordinator at (802) 728-1213 or via mail at P.O. Box 500, Randolph Center, Vermont 05601.
2006-2007 Academic Calendar
2006 Fall Term

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday</td>
<td>August 10</td>
<td>Williston Campus Student Orientation 3:00 to 7:00 PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VAST Orientation for students on the Williston campus 3:00 to 7:00 PM</td>
</tr>
<tr>
<td>Tuesday</td>
<td>August 15</td>
<td>New Faculty Orientation</td>
</tr>
<tr>
<td>Thursday</td>
<td>August 17</td>
<td>VAST Orientation for students on the Randolph campus</td>
</tr>
<tr>
<td>Friday</td>
<td>August 18</td>
<td>New Students Arrival</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Nursing Orientation (PN) Randolph campus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residence halls open for new students at 10 a.m.</td>
</tr>
<tr>
<td>Saturday</td>
<td>August 19</td>
<td>All Faculty Meeting 8:30 a.m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New Student Orientation and First Year Student Advising</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advising Day for All Degree Students</td>
</tr>
<tr>
<td>Sunday</td>
<td>August 20</td>
<td>Returning Student Orientation Registration Day for Non-Degree Students</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residence halls open for returning students at 9 a.m.</td>
</tr>
<tr>
<td>Monday</td>
<td>August 21</td>
<td>Classes Begin for all students at all campuses</td>
</tr>
<tr>
<td>Friday</td>
<td>August 25</td>
<td>Last day to add course(s)</td>
</tr>
<tr>
<td>Monday</td>
<td>September 4</td>
<td>Labor Day – No Classes</td>
</tr>
<tr>
<td>Saturday</td>
<td>September 30</td>
<td>Open House/Alumni Day</td>
</tr>
<tr>
<td>Friday</td>
<td>October 6</td>
<td>Mid-Term Warnings posted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deadline for “I” grades from Spring or Summer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vacation begins after last class for non-PN students</td>
</tr>
<tr>
<td>Monday</td>
<td>October 9</td>
<td>Residence hall open at 1:00 p.m. for PN students only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PN Columbus Day - No classes</td>
</tr>
<tr>
<td>Sunday</td>
<td>October 15</td>
<td>Residence halls open at 1 p.m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dining hall opens for dinner at 5 p.m.</td>
</tr>
<tr>
<td>Monday</td>
<td>October 16</td>
<td>Classes Resume for non-PN students</td>
</tr>
<tr>
<td>Monday</td>
<td>October 30</td>
<td>Last day for Non-PN program students to drop course with a “W” grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Student Evaluations begin</td>
</tr>
<tr>
<td>Thursday</td>
<td>November 2</td>
<td>Pre-registration for Winter & Spring terms begin</td>
</tr>
<tr>
<td>Friday</td>
<td>November 17</td>
<td>Student Evaluations end</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thanksgiving Recess begins for all students after last class</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-registration for Winter & Spring ends</td>
</tr>
<tr>
<td>Sunday</td>
<td>November 26</td>
<td>Residence halls open at 1 p.m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dining hall opens for dinner at 5 p.m.</td>
</tr>
<tr>
<td>Monday</td>
<td>November 27</td>
<td>Thanksgiving Recess ends; classes resume.</td>
</tr>
<tr>
<td>Friday</td>
<td>December 1</td>
<td>PN Fall Term Ends</td>
</tr>
<tr>
<td>Monday</td>
<td>December 11</td>
<td>Last day of classes for term.</td>
</tr>
<tr>
<td>Tuesday</td>
<td>December 12</td>
<td>Final exams and presentations week begins</td>
</tr>
<tr>
<td>Saturday</td>
<td>December 16</td>
<td>Final exams and presentations week ends</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residential halls close at 5:00 PM</td>
</tr>
<tr>
<td>Thursday</td>
<td>December 21</td>
<td>Academic Planning meeting</td>
</tr>
</tbody>
</table>
2006-2007 Winter Term (PN students only)

Monday December 4 PN classes begins
Friday December 15 PN Vacation break begins
Tuesday January 2 PN classes resume
Friday January 26 PN mid-term warnings posted
 Deadline for make-up of grades
 from Fall PN courses
Friday February 9 Vacation begins after last class
Sunday February 18 Residence halls open at 1 p.m.
 Dining hall opens for dinner at 5 p.m.
Monday February 19 PN Student Evaluations begin
 Classes Resume
Monday February 26 Pre-registration for Spring2 Nursing Term begins
 Last day for PN program courses drop with grades
Friday March 9 PN Student Evaluation period ends
Friday March 23 Vacation begins after last class
Sunday April 1 Residence halls open at 1 p.m.
 Dining hall opens for dinner at 5 p.m.
Monday April 2 Classes resume
Friday April 13 PN second term ends

2007 Spring Term

Sunday January 7 Registration Day for Non-Degree Students
 Placement Testing for New Students
 Residence Halls open.
 New Student Orientation begins at 9 a.m.
 Dining Hall opens for lunch at 11 a.m.;
Monday January 8 Classes begin
 Late Student Registration begins at 8 a.m.
Friday January 12 Last day to add course(s)
Friday February 9 Vacation begins after last class.
Sunday February 18 Residence halls open at 1 p.m.
 Dining hall opens for dinner at 5 p.m.
Monday February 19 Classes resume
Friday March 2 Mid-Term warnings posted
 Deadline for make-up of grades from Fall
 Graduation applications due for May commencement
Monday March 19 Last day for course drop with grade
 Student Evaluations begin
Tuesday March 20 Pre-registration for Summer and Fall Begins
Friday March 23 Vacation begins after last class
Sunday April 1 Residence halls open at 1p.m.
 Dining hall opens for dinner at 5 p.m.
Monday April 2 Classes resume
Friday April 6 Student Evaluations end
 Pre-registration for Summer and Fall Ends
Friday April 27 Last day of classes
Monday April 30 Final Exams begin
2007 Spring Term Continued

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>May 4</td>
<td>Final Exams end</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dining hall closes after lunch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residential halls close at 5:00 PM.</td>
</tr>
<tr>
<td>Saturday</td>
<td>May 12</td>
<td>Verification of degree candidates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commencement at 2 p.m.</td>
</tr>
<tr>
<td>Wednesday</td>
<td>May 15</td>
<td>Academic Planning Meetings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VAST Graduation</td>
</tr>
</tbody>
</table>

2007 Spring 2 (PN Only)

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>April 16</td>
<td>PN classes begin</td>
</tr>
<tr>
<td>Friday</td>
<td>May 18</td>
<td>Deadline for grades from Winter term</td>
</tr>
<tr>
<td>Monday</td>
<td>May 21</td>
<td>PN Student Evaluations begin</td>
</tr>
<tr>
<td>Friday</td>
<td>May 25</td>
<td>PN mid-term warnings posted</td>
</tr>
<tr>
<td>Monday</td>
<td>May 28</td>
<td>No classes – Memorial Day</td>
</tr>
<tr>
<td>Tuesday</td>
<td>May 29</td>
<td>Last day for PN program course drop with grade of “W”</td>
</tr>
<tr>
<td>Friday</td>
<td>June 1</td>
<td>PN Student Evaluations end</td>
</tr>
<tr>
<td>Thursday</td>
<td>June 21</td>
<td>PN term ends</td>
</tr>
<tr>
<td>Saturday</td>
<td>June 23</td>
<td>PN graduation</td>
</tr>
</tbody>
</table>

2007 Summer Term

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>May 21</td>
<td>First Summer classes begin</td>
</tr>
<tr>
<td>Friday</td>
<td>June 29</td>
<td>Vacation begins after last class</td>
</tr>
<tr>
<td>Monday</td>
<td>July 9</td>
<td>Classes Resume</td>
</tr>
<tr>
<td>Monday</td>
<td>July 16</td>
<td>Last Day to Drop with a grade</td>
</tr>
<tr>
<td>Monday</td>
<td>July 16</td>
<td>Summer Bridge Begins</td>
</tr>
<tr>
<td>Friday</td>
<td>August 10</td>
<td>Summer Bridge ends</td>
</tr>
<tr>
<td>Monday</td>
<td>August 13-17</td>
<td>Calculus Review</td>
</tr>
<tr>
<td>Friday</td>
<td>August 17</td>
<td>Summer Term Ends</td>
</tr>
</tbody>
</table>
General Information

Vermont Technical College is a public, co-educational, two- and four- year technical college with a rural residential campus located in Randolph Center, Vermont, a non-residential Williston campus in Williston, Vermont and seven satellite nursing campuses located throughout the state. Part of the Vermont State Colleges system that includes Castleton State College, Johnson State College, Lyndon State College, and the Community College of Vermont, Vermont Tech offers collegiate-level programs leading to the Associate of Applied Science, Associate of Science, and Associate of Engineering with majors in applied technologies and related fields; to the Bachelor of Science in Architectural Engineering Technology, in Computer Engineering Technology, in Electromechanical Engineering Technology, in Business Technology & Management; in Information Technology, and in Software Engineering to a certificate in Practical Nursing.

The college provides students with a rigorous, broad-based background in the engineering technologies and applied sciences. Graduates are well prepared to work with scientists, engineers, and other professionals in meeting the challenges of today's high-tech workplace. They find career opportunities in business, industry, commerce, transportation, agriculture, health care, construction, and government.

A major advantage of the associate's degree is that it affords the choice of entering employment upon graduation or continuing toward a bachelor's degree. The majority of Vermont Tech graduates go directly to work. A significant number enter bachelor's degree programs after graduation.

Mission Statement

Vermont Technical College (Vermont Tech) is an integral and unique college within the Vermont State Colleges education system, offering associate and baccalaureate degrees, certificates, and continuing education in career-oriented technologies such as agriculture, applied sciences, business, engineering, and health sciences.

Vermont Tech serves its students, the state of Vermont, and the region by providing high quality, accessible post-secondary education through broad-based curricula that prepare the graduates for the workplace, for continuing formal education, and for lifelong learning.

Vermont Tech undertakes its mission guided by institutional values and focused by institutional objectives.

Institutional Values

Vermont Tech emphasizes the core values of dedication, integrity, and responsibility as a foundation for learning, for career preparation, and for citizenship.

Vermont Tech is dedicated to its tradition of helping students reach their full potential by developing their academic and scholarly proficiencies, critical thinking and communication skills, civic responsibility, and global awareness.

The faculty, staff, administration, and students at Vermont Tech are committed to forming a stimulating, compassionate, and supportive learning community that fosters the personal and professional growth of all members.
Vermont Tech values its role in supporting the Vermont economy and meeting the needs of businesses by preparing highly qualified graduates in various occupations, as well as by providing businesses with opportunities for continuing education for employees.

Institutional Objectives

- Establish a high quality academic environment
- Broaden students' experiences both academically and socially
- Emphasize the combination of theoretical concepts and practical applications in the curriculum
- Prepare students to adapt to changing technology
- Offer academic and personal support services that enhance student learning
- Furnish placement and transfer services for students, graduates, and alumni seeking employment and further education
- Afford opportunities for faculty and staff development
- Pursue strong liaisons with Vermont elementary and secondary schools (K-12)
- Inform the general public and potential students of opportunities at Vermont Tech
- Encourage a large and diverse population to enter Vermont Tech
- Strengthen relationships with our community partners
- Provide outreach programs to meet the needs of entrepreneurs, employers, and employees
- Maintain continuing communication and relationships with alumni

Vermont State Colleges Mission Statement

For the benefit of Vermont, the Vermont State Colleges provide affordable, high quality, student-centered and accessible education, fully integrating professional, liberal, and career study.

This integrated education, in conjunction with applied learning experiences, assures that graduates of VSC programs will:

1. Demonstrate competence in communication, research and critical thinking,
2. Practice creative problem-solving both individually and collaboratively,
3. Be engaged, effective, and responsible citizens,
4.Bring to the workplace appropriate skills and an appreciation of work quality and ethics,
5. Embrace the necessity and joy of lifelong learning.

The Vermont State Colleges also offer numerous opportunities for others to engage in continuous learning to meet their specific goals.
History

Vermont Technical College is one of the five member institutions of the Vermont State Colleges system.

In Public Act No. 1 of 1866, the Vermont legislature established in Randolph Center the first public school in Vermont devoted to the education of teachers. The Randolph State Normal School served this function until 1910, when the legislature determined the need for a state agricultural school and established the Vermont School of Agriculture at the Normal School site by legislative act (November 29, 1910).

Over the long years of its existence, the Vermont School of Agriculture–VSA–graduated many Vermonters distinguished by their numerous and notable contributions in agriculture and government.

In response to evolving educational needs in the state, technical courses were added to the offerings of the school in 1957, and a new name–Vermont Agricultural and Technical Institute–reflected this expanding mission. The Vermont Agricultural and Technical Institute opened on September 9, 1957 as the first technical institute in Vermont, with an initial enrollment of approximately 75 students.

By act of the 1961 Legislature, VATIC and the then state teacher colleges (Castleton, Johnson, Lyndon) were placed under the control of a newly-created public corporation known as Vermont State Colleges. Community College of Vermont joined the other state colleges in 1975.

The name VATIC was changed to Vermont Technical College on July 1, 1962 and the college was authorized to grant the degree of Associate of Applied Science with major in the course pursued. The Associate of Engineering degree was first granted in 1965 and the first one-year certificate was awarded in 1986. Another milestone came on May 7, 1993 when the Vermont State Colleges Board of Trustees approved the college's first baccalaureate degree program–the Bachelor of Science in Architectural Engineering Technology. A second baccalaureate curriculum–the Bachelor of Science in Electromechanical Engineering Technology–began instruction in fall of 1995 and the Bachelor of Science in Computer Engineering Technology in fall of 2000. In 2005 the college offered a Bachelor of Science in either Software Engineering or Information Technology.

Nursing programs were added to the college curriculum in 1994, when Vermont's three schools of practical nursing became part of the Vermont Tech community. Beginning in fall of 1996, Practical Nursing became a credit-bearing program that can also be applied toward a two-year associate's degree in nursing from Vermont Tech.

Location

The Vermont Technical College main campus is located on 544 acres in the rural village of Randolph Center, near the geographical center of the State of Vermont. Interstate 89 passes within one mile of the campus. Visitors should use exit 4 and travel east up the hill on Route 66 to Randolph Center.

Two branches of the state highway system serve the town of Randolph–Route 12 passes through the village of Randolph and Route 14 through the village of East
Randolph. The distance from either village is about four miles. Buses from the metropolitan areas serve the Randolph area, and Amtrak's Vermonter stops downtown twice daily.

Vermont Tech also is located in Williston, Vermont. The Williston campus is accessible from exit 12 of Interstate 89. Seven nursing satellite campuses are located throughout the state.

Academic Recognition

By authority conferred by the legislature of the State of Vermont, the Trustees of Vermont State Colleges have authorized Vermont Technical College to grant the degrees of Associate of Applied Science, Associate of Science, Associate of Engineering, and Bachelor of Science with a major in the program pursued.

The Vermont Academy of Science and Technology (VAST) at Vermont Technical College has Independent School Approval for grade 12 from the Vermont State Board of Education.

Vermont Technical College is an institutional member of the New England Association of Schools and Colleges, the Vermont Higher Education Council, American Association of Community Colleges, and the American Society for Engineering Education.

Accreditation

Vermont Technical College is accredited by the New England Association of Schools and Colleges.

The following programs are accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology (TAC of ABET): Architectural & Building Engineering Technology; Architectural Engineering Technology; Civil & Environmental Engineering Technology; Computer Engineering Technology; Electrical Engineering Technology; Electromechanical Engineering Technology; Mechanical Engineering Technology. The Technology Accreditation Commission of the Accreditation Board for Engineering Technology may be contacted at 111 Market Place, Suite 1050, Baltimore, Maryland 21202-4012, telephone (410) 347-7700.

The Dental Hygiene program is accredited by the Commission on Dental Accreditation, 211 East Chicago Ave., Chicago, Illinois 60611-2678, (312) 440-4653.

The Veterinary Technology program is accredited by the American Veterinary Medical Association as a program for educating veterinary technicians at 1931 North Meacham Road, Suite 100, Schaumburg, Illinois 60173.

The Practical Nursing and Associate of Science in Nursing programs are approved by the Vermont State Board of Nursing and accredited by the National League for Nursing Accrediting Commission (NLNAC), 61 Broadway, 33rd New York, New York 10006. The Vermont State Board of Nursing may be contacted at Heritage Building, 31 River Street, Montpelier, Vermont 05609-1104.

The Respiratory Therapy program is accredited by the Commission on Accreditation of Allied Health Programs, in collaboration with the Committee on Accreditation for Respiratory Care Programs, 1248 Harwood Rd., Bedford, Texas 76021-4244.
Technology Extension Division

The College's Technology Extension Division seeks opportunities to extend Vermont Tech’s professional services and custom education and training programs throughout Vermont, and has established off-campus associate's degree and certificate programs in response to industry and public demand. The General Engineering Technology degree programs are industry-sponsored and offered primarily at the facilities of sponsoring organizations.

Through this division, the college has reached out to the business community and the state's growing numbers of adult learners with programs offered at times and locations convenient for working people.

The Technology Extension Division serves the college by providing information about the current and future technical needs of Vermont's business and industrial communities, and by providing assistance and leadership in the development of new programs and curricula.

Nursing Programs

The Vermont Technical College Nursing Program is offered at four permanent locations in the state:

• Fanny Allen/Williston Campus
• Putnam/Bennington Campus
• Thompson/Brattleboro Campus
• Randolph Center Campus

In addition, the Nursing Program uses selected outreach locations as needed with instruction delivered over Vermont Interactive Television. Through a collaboration with the Community College of Vermont, locations around the state include Middlebury, Newport, St. Albans, White River Junction, and Springfield.

All sites offer an accredited program of educational preparation for students seeking entry-level nursing opportunities. The Practical Nursing programs are designed for completion over a 10-1/2 month period by full-time students. The schools also offer a second year of nursing studies leading to the associate's degree in nursing (ADN). Student housing is available only on the main campus.

The Department of English, Humanities, and Social Sciences

The Department of English, Humanities, and Social Sciences offers liberal arts courses, which are the foundation for education and which give breadth and depth to all degrees. Liberal arts courses introduce students to the core knowledge and concepts of the arts, humanities, and social sciences; foster an appreciation for the major domains of human achievement and inquiry into the human condition; provide a common educational experience; refine communication and information literacy skills; celebrate common values and diversity of experiences and viewpoints; develop critical thinking
The Vermont Academy of Science and Technology (VAST) provides an opportunity for high school seniors with a strong interest and ability in science and math to complete their senior year at Vermont Tech. Recognized by the State of Vermont as an approved independent high school, the program awards high school diplomas. Additionally, because Vermont state law allows VAST students to transfer Vermont Tech credits back to their sending high schools, the students may receive a second high school diploma from that school.

Entry into VAST is competitive. Students should have a strong academic high school transcript and PSAT scores of 55 or higher for each sub-score (writing, reading comprehension, and math). Applicants should be able to meet the program entry requirements for specific majors listed in the table in the admissions section of this catalog. VAST students are expected to maintain at least a 2.0 GPA while attending Vermont Technical College and will be required to return to their sending high school if they cannot maintain good academic standing. VAST students also are expected to adhere to all policies and procedures outlined in the student handbook. For the application requirements, please refer to the admissions section of this catalog under the Vermont Academy of Science and Technology heading.

Upon completion of the one-year program, students may remain at Vermont Tech to complete a degree or transfer to another institution.

The Vermont Legislature has provided that a Vermont student’s general state support grant for the senior year of high school may be used to cover tuition for VAST. Vermont Tech provides financial aid to Vermont residents for any gap that may exist between the state grant and its tuition, enabling Vermonters to attend VAST tuition-free. Other fees, including room and board for students who choose to live on campus, are the responsibility of the student.
Math Science Upward Bound

Math Science Upward Bound (MSUB) is a federally funded TRIO program designed to assist Vermont high school students who come from families with a limited income and have parents who do not have bachelor’s degrees. The program’s goal is to help its participants pursue their dreams of a college education and the opportunities that college degree provides. To achieve this goal, MSUB hosts a six-week summer academic residential program at Vermont Tech and provides a variety of academic year support services.

MSUB academic staff monitor a participant’s academic and social progress through regular monthly meetings at their schools. Assistance is provided in course selection and career exploration, and tutoring and mentoring are available. The college application and financial aid process are stressed during a participant’s junior and senior years.

On select days throughout the school year, MSUB sponsors on-campus social gatherings, cultural and academic enrichment activities, and college application and financial aid workshops. The campus is often the jumping-off point for visits throughout New England to museums, the theater, concerts, sporting events, colleges, and college fairs.

The summer educational program is academically rich. Academic electives focus on applied learning and are supported by core classes in mathematics, test prep, literature, composition, college preparation, and foreign language. Additionally, enrichment electives give students opportunities to work closely with professionals in science or technology-related fields. A variety of cultural enrichment activities enhance the experience.

Math Science Upward Bound values the following in its educational programming:

- quality instruction and student advisement;
- innovative approaches to pre-college academic services;
- exploration of math and science subjects through experiential learning;
- the spirit of inquiry and the free exchange of ideas;
- cultural enrichment and personal growth; and
- family involvement in student’s academic development.
Campus Facilities

Administrative Center–Constructed in 1949 as a dairy barn for the college farm, this building later served as the maintenance facility before undergoing major renovations in 1986-87. As the "front door" to the campus, the modern structure houses the admissions and reception area, the financial aid and registrar's offices, most administrative offices, student services, and a conference room.

Automotive Technology Center–Completed in 1989 to support the Automotive Technology curriculum, this building houses two classrooms, an audio-video resource room, and lab area with computerized diagnostic equipment.

A 1,600 square foot addition to the Auto Tech Center was completed in 2003 that provides laboratory space for the Construction Practice and Management program. Also, newly completed in 2004, a 900-square-foot student garage gives students a place to work on individual vehicles.

College Farmstead–Vermont Tech's farm, built in 1967, is an integral part of the agricultural curriculum. Facilities include a classroom, computers with applications specific to agriculture, and practical lab equipment needed to learn productive farming. The farm is also a resource for Veterinary Technology students. Since 1967, there have been three major renovations of farm facilities, largely in response to changes in agricultural technology. The dairy herd consists of 75 milk cows and 70 head of young stock, all registered Holsteins. There are 225 acres in tillable land and 245 acres of woodland, including an apple orchard and a sugarbush.

Conant Hall–Named in memory of Edward Conant, who devoted his life to Vermont education, this academic center was constructed in 1966 and renovated in 1987. The building contains a classroom, a large lecture hall, three computer laboratories, the Learning Center, the computer service center, and faculty and staff offices.

Green Hall–This academic center, completed in 1970, contains six classrooms, a greenhouse, electrical, civil engineering and computer labs, and the offices of the Dean of Academic Affairs. The building is named for Leland G. Green, former principal of the Vermont School of Agriculture, the forerunner of Vermont Tech.

Hartness Library–Located in the heart of the Randolph Center campus, the library is the administrative and service center of the Vermont Community & Technical Colleges Library, serving the communities of Vermont Tech and the Community College of Vermont. Open more than 80 hours per week during the academic year, Hartness houses an extensive collection of print, microform, and audio and video media and offers professional staff assistance with library research and information literacy skills. Through the library’s website, students can access thousands of full-text periodicals, consult reference resources, and request books online 24 hours per day, seven days per week from any location. A toll-free number (1-800-431-0025) gives access to a team of library professionals who can provide reference and research assistance whenever the library is open. The library web page provides round-the-clock access to research.
resources. At any time of day and from any location, Vermont Tech students can use the library web page to search the library catalog and place an interlibrary loan request, complete a research project using the thousands of full-text journals and books available online, or follow the selected hypertext links to reference materials or databases relevant to the academic programs at Vermont Tech. Hartness Library is a learning resource that students use throughout their college careers.

Judd Hall—Built in 1957 and named for Stanley G. Judd, principal of the Vermont School of Agriculture, Judd houses the Academic Support Services offices, as well as, a practice gymnasium frequently used for intramural activities or as an auditorium. The college bookstore is located in Judd facing the plaza.

Keenan Hall—This residence hall, completed in 1968, accommodates 161 students and also houses the campus Health Center. The building was named in memory of the late Maurice Keenan, a member of Vermont State Colleges Board of Trustees until his death in 1965.

Langevin House—The historic Langevin House was built in 1802-03 by the Rev. Tilton Eastman, as the parsonage for the first church parish of Randolph town, later called Randolph Center. Its front entrance is on the old Stage Road, one of several post roads that connected central Vermont with Boston and Montreal. The beautifully rehabilitated farmhouse now serves as a campus conference and meeting center, as well as a training facility.

Maintenance Building—Completed in 1985, this facility provides space for the physical plant office, the mechanical and electrical shops, and vehicle maintenance. The building adjoins the heating plant.

Morey Hall—This residence hall houses 137 students. The campus dining hall on the first floor accommodates approximately 600. Named in honor of Captain Samuel Morey, an early Vermont marine inventor, it was completed in 1966.

Morrill Hall—Constructed in 1962, this building was named in memory of U.S. Senator Justin Morrill from Vermont, author of the Morrill Land Grant Colleges Act of 1861. Renovated in 1987 and in 2000, it contains physics, chemistry, life science, metallurgy, thermodynamics, strength of materials, manufacturing, robotics, and veterinary technology laboratories. Morrill also houses modern drafting studios, faculty offices, and the headquarters studio for the statewide Vermont Interactive Television system.

Morrill Hall Addition—Completed in summer of 2000, the college's newest academic building houses classroom and laboratory space for the programs in biotechnology and nursing, as well as, seven general computing and CAD labs, faculty offices, and lounge areas. The building's mechanical infrastructure (HVAC, plumbing, lighting, telecommunications) serves as a “working lab” for architectural engineering technology students.
Nutting Hall—The newest and largest residence hall, Nutting houses 170 students. Completed in 1970, it honors the memory of William Nutting, who, upon graduation from Dartmouth in 1807, became the first head of the Orange County Grammar School, another Vermont Tech forerunner. The college exercise and weight rooms are located in Nutting Hall.

Old Dorm—The oldest building on campus, Old Dorm was built in 1918 and renovated in 1988. Old Dorm can house 90 students, and its main lounge is regularly used for conferences and meetings. The Rathskellar snack bar is on the ground floor. At the time of its construction, the building was the only student residence hall and also housed the dining hall, bookstore and library.

Red Schoolhouse—Built in 1903, the Randolph Center Red Schoolhouse was deeded to Vermont Technical College in 2001. The first floor was renovated in 2002 and contains two classrooms. Plans for the building include the renovation of the second floor, as well as the basement, in the future.

Student Health and Physical Education (SHAPE)—Completed in 1990, SHAPE contains a 25-yard, six-lane swimming pool, double-court gymnasium, and two racquetball courts. Work is now underway to greatly expand the facility with the construction of a major addition called the Campus Center. Features of the addition include a new personal fitness area, student lounge and dining area.

Other Campuses

Williston Campus/Williston—Located at Taft’s Corners, Blair Park business complex, in Williston, Vermont in the heart of Chittenden County’s new shopping and entertainment area—Vermont Tech’s Williston campus is our newest campus, offering a wide array of degree and certificate programs for part-time or full-time students. This campus has been designed to make our top-notch technical education programs available to nonresidential students throughout northwestern Vermont.

The Williston campus is rapidly expanding with new electrical, physics, anatomy, biology, and chemistry laboratories and state-of-the-art CAD and computer labs. It currently houses all of the college’s allied health programs including dental hygiene, nursing, and respiratory therapy. Also available are degree programs in electrical engineering technology, computer engineering technology, aeronautical engineering technology, and business management and technology. The campus also maintains a Vermont Interactive Television studio and supports a wide array of degree and non-degree workforce-education programs for area businesses.

Fanny Allen/Williston Campus—The Fanny Allen Memorial School for Practical Nursing was founded on June 28, 1957 and the first class entered on November 18, 1957. The school was housed in the Fanny Allen Hospital.
The original curriculum was based on the National Association for Practical Nursing Education and Service (NAPNES) statement that said, “Candidates will be trained in the care of medical and surgical patients, in the diet kitchens, with the aged, with mothers, with newborn infants, and with children.”

Now, the Fanny Allen site is in Williston, at the Blair Park business complex, minutes away from downtown Burlington, the University of Vermont, St. Michael’s College, and Champlain College. The physical plant is spacious, light, and airy. The clinical facilities—the Green Mountain Nursing Home, Birchwood Terrace, and Fletcher Allen Health Care—more than meet the educational needs of nursing students.

Putnam/Bennington Campus—The Putnam Memorial School of Practical Nursing was established in 1946 by the Board of Corporators of the Putnam Memorial Hospital. It was the eighth school of practical nursing in the country to be nationally accredited by the National Association for Practical Nurse Education and Service.

In the early years, the students were involved in an apprentice-style service oriented program where licensure was permissive rather than mandatory. In 1970, the Board of Corporators of the hospital, through Bennington County legislators, petitioned the state legislature for additional financial assistance to operate the school. In 1971, the school’s parent organization became the Vermont State Department of Education. In July 1994, Putnam Memorial School of Practical Nursing became a program of Vermont Technical College.

The Putnam Memorial School of Practical Nursing has been the recipient of four Helene Fuld Trust grants. These funds have been used to buy nursing arts laboratory equipment, computers, office and kitchen equipment, and student lounge furniture. The grant also funds a student counseling service.

The school is on the grounds of the Southwestern Vermont Medical Center in downtown Bennington, Vermont. All clinical facilities are within walking distance, and day care is located in the school building.
Thompson/Brattleboro Campus—The Thompson School for Practical Nurses is the oldest continuously operating school for practical nurse education in the United States, opening in 1907. It was started in response to the needs of birthing mothers and the needs of women joining the workforce as shop girls, needle women, and seamstresses during the Industrial Revolution.

During the summer of 1861, while the North and South were in the throes of civil war, Mr. and Mrs. Thomas Thompson vacationed in Brattleboro, Vermont. Mrs. Thompson became very interested in the women who gathered in Brattleboro to sew garments for the soldiers for very little pay. In time, Mr. and Mrs. Thompson dedicated their considerable wealth to establish a trust fund for the relief of poor seamstresses, needlewomen, and shop girls in Brattleboro and Rhineback, New York. By court decree, two-thirds of the income from the estate was to go to Brattleboro, and one-third to Rhineback; although the sewing women were named as special beneficiaries, the court ruled that the Will allowed for other activities, including the building of a hospital in Brattleboro.

Brattleboro Memorial Hospital did not have a resident trained nurse when it opened in 1904. A group of fifteen local churchwomen were called together in 1907 by Richard Bradley, one of the three first trustees appointed for administrating the Thomas Thompson Trust Fund. This group, the Brattleboro Mutual Aid Association, had as its objective to supply those needs in sickness that were not then properly covered by current hospital service, visiting nurses, or by unorganized private nursing.

From a house on Harris Place, a nurse training course began. The graduates were called Mutual Aid Nursing Attendants and they cared for the sick in their homes. From this humble beginning, the Thompson School for Practical Nurses began. In 1998, the school relocated to new facilities in the Vermont Agriculture and Business Education Center.
Admissions

The admissions process includes a review of all transcripts, letters of recommendations, prior work or extra-curricula experience, and performance on the standardized tests, if applicable. Admission is offered to those candidates whose credentials indicate the greatest promise of success in their chosen academic pursuits.

Applicants who do not meet the normal admissions requirements may be admitted on a provisional status. Provisional acceptances may include such requirements as summer coursework prior to enrolling or additional coursework while enrolled.

Application Deadlines

Vermont Tech’s policy of rolling admissions means that we process applications throughout the year until we determine that we have filled each semester’s class. We reserve the right to close admission once the class is filled. Applicants will be notified promptly of admission status after review of a complete student file. However, because admission to selected programs is exceptionally competitive, decisions on applications to these programs are not normally made until the entire applicant pool has been reviewed. Traditionally, applications are reviewed in early February for P.N. applicants, early March for Dental Hygiene program applicants and late March for A.D.N. applicants. Please call the Office of Admissions to confirm these deadlines.

Admission Deposit

Accepted students must remit a non-refundable deposit of $200 on or before May 1 for the fall semester or December 15 for the spring semester. After these dates, deposits will be accepted on a space-available basis. The deposit is credited toward the first semester’s bill.

Testing Requirements

All freshman admission candidates are required to take either the SAT I or the ACT. Applicants who are already out of high school are not normally required to take either exam. The College Entrance Examination Board code for Vermont Tech is 3941; the ACT code number is 4323.
First-Year Applicants

If you have never previously attended any college or university, please submit:

- Completed Application (with information typed or printed)
- $35 application fee (payable to Vermont Technical College)
- Official high school transcript, with at least the first marking period grades of the senior year, or official scores from a high school equivalency exam (G.E.D.)
- SAT I or ACT results

Transfer Applicants

If you have previously enrolled or taken college-level course work at another college or university, please submit:

- Completed Application (please type or print)
- $35 application fee made payable to Vermont Technical College
- Official high school transcript, or official scores from a high school equivalency exam (G.E.D.) and SAT I or ACT results, if available
- Official transcript(s) from all colleges previously attended, whether seeking transfer credit or not
- Official transcript(s) from any other Vermont State College attended for course work completed prior to the 2002 summer term.

Allied Health Applicants—Nursing, Respiratory Therapy, Dental Hygiene

If you are applying to one of the Allied Health programs, please submit:

- Completed Application (please type or print), including location to which you seek admission—the nursing programs are offered at multiple locations in Vermont. Indicate any alternate locations you would consider attending.
- $35 application fee made payable to Vermont Technical College
- Official high school transcript, or official scores from a high school equivalency exam (G.E.D.) and SAT I or ACT results if available
- Official transcript(s) from all colleges previously attended, whether seeking transfer credit or not
- Two letters of recommendation, dated within the past six months, on letterhead that addresses your: (1) Work ethic (2) Communication skills (3) Potential for adaptation to a fast-paced clinical environment (4) Potential to competently/compassionately deliver health care to clients across the lifespan. (Letters from family and family members cannot be accepted.)
• Vermont Tech Placement Tests: Acceptance guidelines for nursing include placement into freshman level English and minimum Accuplacer score of at least 70 on arithmetic and at least 40 on algebra (Testing may be waived if an applicant has previous assessment testing from another Vermont State College or if the applicant has approved transfer credit in math and English; please contact Admissions Office for decision).

• (Nursing Only) Prior to start of classes, provide proof of current Health Provider CPR (CPR designated for health care personnel)

• (Nursing only) If “returning” to complete a Practical Nursing program after a year or longer, students must repeat all nursing clinical courses in the program.

Additional Requirements for Associate’s Degree in Nursing

• Submit copy of current LPN license (without any sanctions/restrictions)

• If a graduate of a non-college PN program or a graduate of a Vermont LPN program prior to 1997, you must show completion of college-level equivalency for: Anatomy & Physiology (8 credits); Nutrition (3 credits); and Concepts of Human Growth & Development (3 credits)

• Pass the PN National Council Licensure Exam (N-CLEX-PN) prior to entry

• If a current PN student, attain a first semester PN GPA of 3.2 or higher, and a second and third semester GPA of 3.0 or higher. If a LPN graduate, you must have a GPA of 3.0 in you LPN coursework. The following courses: BIO 2120, ENG 1061, MATH 1040, PSY 1010 and an approved Arts/Humanities elective may be taken after LPN graduation to improve your GPA to a 3.0 level.

• Provide recommendations on letterhead that address your: (1) Clinical competence (2) Work ethic (3) Potential transition to RN role, particularly with respect to leadership, management, and accountability (4) Interpersonal skills. Current PN student must have recommendations from at least one current faculty and one healthcare employer/colleague; LPNs must have recommendations from two healthcare employers/colleagues.

Three-Year Options

Vermont Technical College has developed three-year options (3YO) in selected associate's degree programs for applicants who need to complete math, science, or English prerequisites. The 3YO provide students with the solid background in these subjects needed to succeed in a demanding technical curriculum, while easing the academic load during the first few semesters. They are designed to provide an academic challenge appropriate to a student's prior experience in each subject area. Students enjoy full freshman status in their chosen majors from the first day of classes and experience the curriculum in the same sequence as their peers beyond the introductory courses.

A student may choose the 3YO upon applying, or the college may place students in a three-year curriculum based on the Vermont Tech Placement Test results. For more information, contact the Office of Admissions.
If a prospective student lacks any of the requirements for admission to an associate's degree program described on the facing page, he/she should consider the three-year options offered in selected programs.

Vermont Academy of Science & Technology

If you are applying to this accelerated high school program, please submit:

- Completed Application (please type or print)
- $35 application fee (payable to Vermont Technical College)
- Official high school transcript, with at least the first marking period grades of the junior year, or home school plan.
- PSAT or SAT I or ACT results
- Two letters of recommendation on official letterhead, one from a teacher and one from a guidance counselor or principal.
- Personal Interview
- Vermont Tech Placement Tests
- On a separate page, please write an essay about why you are applying to the Academy. Discuss: 1) How do you think attending the Academy will help you reach your goals? 2) What can you contribute to the Vermont Tech community? 3) Describe a significant event in your life and how it has affected you.

Tech Prep

In cooperation with participating secondary technical centers, Vermont Tech has developed a tech prep program which encourages secondary school students to combine both college prep and vocational-technical coursework in preparation for technical careers. After high school graduation, students in the program have the option of going directly to work or to college.

Students enrolled in the Tech Prep program are able to receive college credit for approved courses. While this may not reduce the financial expense, it does provide more flexibility in their schedules. Students are encouraged to continue a strong math and English curriculum while attending their tech center.

For more information about the Tech Prep initiative in your area, please contact your local Tech Center advisor. Acceptance of transfer credits is at the discretion of the receiving post-secondary institution. Visit us on-line at fastforward.vsc.edu.
<table>
<thead>
<tr>
<th>Vermont Tech Program</th>
<th>Level</th>
<th>Mathematics, Science & Other Requirements (in addition to English & History/Social Science normally required for high school graduation).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Engineering Technology</td>
<td>AE</td>
<td>Algebra I; Algebra II; Geometry; Lab Physics or Lab Chemistry (physics preferred) (This is a +I program to the Burlington Tech Center Aviation Technology program)</td>
</tr>
<tr>
<td>Agribusiness Management Technology</td>
<td>AAS</td>
<td>Algebra I; Algebra II recommended (Chemistry preferred)</td>
</tr>
<tr>
<td>Applied Technology</td>
<td>AAS</td>
<td>Algebra I; Algebra II recommended</td>
</tr>
<tr>
<td>Architectural & Building Engineering Technology</td>
<td>AAS</td>
<td>Algebra I; Algebra II; Geometry; Lab Physics or Lab Chemistry (physics preferred)</td>
</tr>
<tr>
<td>Architectural Engineering Technology</td>
<td>BS</td>
<td>Completion of Vermont Tech’s AAS program in Architectural/Building or Civil/Environmental Engineering Technology (or equivalent)</td>
</tr>
<tr>
<td>Automotive Technology</td>
<td>AAS</td>
<td>Algebra I and Geometry; Algebra II recommended; Lab Physics or Lab Chemistry recommended</td>
</tr>
<tr>
<td>Business Technology & Management</td>
<td>AAS</td>
<td>Algebra I; Algebra II recommended</td>
</tr>
<tr>
<td>Business Technology & Management</td>
<td>BS</td>
<td>Two-year degree in Applied Science or Engineering; computer skills including proficiency in keyboarding, word processing, and spreadsheets</td>
</tr>
<tr>
<td>Civil & Environmental Engineering</td>
<td>AE</td>
<td>Algebra I; Algebra II; Geometry; Lab Physics or Lab Chemistry</td>
</tr>
<tr>
<td>Computer Engineering Technology</td>
<td>AE</td>
<td>Algebra I; Algebra II; Geometry; Lab Physics or Lab Chemistry (physics preferred)</td>
</tr>
<tr>
<td>Computer Engineering Technology</td>
<td>BS</td>
<td>Completion of Vermont Tech’s A.E. in Computer Engineering Technology or equivalent</td>
</tr>
<tr>
<td>Construction Practice & Management</td>
<td>AAS</td>
<td>Algebra I and Geometry; Algebra II recommended; Lab Physics or Lab Chemistry recommended</td>
</tr>
<tr>
<td>Dairy Farm Management Technology</td>
<td>AAS</td>
<td>Algebra I; Algebra II recommended; two years of science (Chemistry preferred)</td>
</tr>
<tr>
<td>Dental Hygiene</td>
<td>AS</td>
<td>Algebra I; Geometry; Algebra II; Biology w/Lab; Chemistry w/Lab; Minimum accuplacer scores of 70 for arithmetic and 40 for algebra; two letters of recommendation.</td>
</tr>
<tr>
<td>Diesel Power Technology</td>
<td>AAS</td>
<td>Algebra I and Geometry; Algebra II recommended; Lab Physics or Lab Chemistry recommended</td>
</tr>
<tr>
<td>Program</td>
<td>Degree</td>
<td>Requirements</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Electrical Engineering Technology</td>
<td>AE</td>
<td>Algebra I; Algebra II; Geometry; Lab Physics or Lab Chemistry (physics preferred)</td>
</tr>
<tr>
<td>Electromechanical Engineering Technology</td>
<td>BS</td>
<td>Completion of Vermont Tech’s AE program in Electrical Engineering Technology or Mechanical Engineering Technology (or equivalent)</td>
</tr>
<tr>
<td>General Engineering Technology*</td>
<td>AAS</td>
<td>Algebra I; Algebra II; Geometry; Lab Physics or Lab Chemistry (physics preferred)</td>
</tr>
<tr>
<td>Information Technology</td>
<td>AS</td>
<td>Algebra I; Algebra II; Geometry; Lab Physics or Lab Chemistry</td>
</tr>
<tr>
<td>Information Technology</td>
<td>BS</td>
<td>Completion of Vermont Tech’s AS in Information Technology or equivalent</td>
</tr>
<tr>
<td>Landscape Development & Ornamental Horticulture</td>
<td>AAS</td>
<td>Algebra I, Algebra II recommended: two years of science (lab course preferred)</td>
</tr>
<tr>
<td>Mechanical Engineering Technology</td>
<td>AE</td>
<td>Algebra I; Algebra II; Geometry; Lab Physics or Lab Chemistry (physics preferred)</td>
</tr>
<tr>
<td>Nursing**</td>
<td>AS</td>
<td>LPN licensure with 3.2 minimum GPA after first semester and 3.0 GPA in LPN coursework or equivalent; Minimum accuplacer scores of 70 for arithmetic and 40 for algebra; 2 letters of recommendation; high school level chemistry (with lab) or college level microbiology</td>
</tr>
<tr>
<td>Practical Nursing**</td>
<td>C</td>
<td>Strongly recommend minimum of high school level chemistry, biology, and Algebra I (within last 10 years); Minimum accuplacer scores of 70 for arithmetic and 40 for algebra; 2 letters of recommendation.</td>
</tr>
<tr>
<td>Respiratory Therapy</td>
<td>AS</td>
<td>Strongly recommend minimum of high school level chemistry, biology, and Algebra I (within last 10 years); Minimum accuplacer scores of 70 for arithmetic and 40 for algebra; 2 letters of recommendation</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>AS</td>
<td>Algebra I; Algebra II; Geometry; Lab Physics or Lab Chemistry</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>BS</td>
<td>Completion of Vermont Tech’s AS in Software Engineering or equivalent</td>
</tr>
<tr>
<td>Telecommunications Technology*</td>
<td>AAS</td>
<td>Algebra I; Algebra II; Geometry; Lab Physics or Lab Chemistry</td>
</tr>
<tr>
<td>Veterinary Technology**</td>
<td>AAS</td>
<td>Biology; Chemistry with lab; Algebra I; Algebra II recommended. Interview with Faculty.</td>
</tr>
</tbody>
</table>

AAS: Associate of Applied Science
AS: Associate of Science
C: Certificate Program
AE: Associate of Engineering
BS: Bachelor of Science

* Industry-sponsored program offered at the facilities of sponsoring organizations. Contact the Technology Extension Division for questions.
** Apply early, admission competitive
Acceptance of Offer of Admission

A qualified applicant will be sent an offer of admission and follow-up materials which include a Room and Board Contract, Health Record and Physical Examination Form, and Placement Test Registration Form.

A place in the entering class will be reserved when the applicant returns these completed forms and required fees as explained below by the dates indicated in the offer of admission:

- The $200 Advance Tuition Deposit, which is a token of a student's good faith and intention to register, is applied to the first semester's tuition. The college reserves the right to cancel an offer of admission at any time until the applicant meets these conditions.
- The $100 non-refundable room deposit must accompany the Room and Board Contract. Students residing on campus are required to participate in a meal plan.
- The $25 non-refundable transcript evaluation fee is required for students seeking transfer credit for work completed outside of the Vermont State Colleges system. This evaluation is normally completed after the student's acceptance of the offer of admission, and the fee is billed to the student's account. Early transcript evaluation can be made for applicants who pay the evaluation fee in advance.

Final acceptance is contingent upon the satisfactory completion of the applicant's high school or any other current program of study.

Placement Testing

All students are required to take placement tests in writing and mathematics. The test is scheduled during the spring and summer. Test results are used to ensure that students are placed in the correct courses at registration.

Students who have completed bachelor's degrees in the United States and/or have met the English and mathematics program requirements may be exempted.

If a student's skills are below minimum levels, he or she will be required to take developmental courses in the appropriate areas. This would result in additional coursework and, in most instances, a lengthening of the time required to graduate.

A student has the right to appeal the results of the placement test by contacting the office of the Academic Dean. Students with disabilities should contact the Learning Skills Specialist to discuss possible test accommodations.

Students who place into a three-year mathematics or English sequence may still be accepted to programs that do not offer the three-year option. These students may require an additional year to complete their associate’s degree requirements.

Orientation

New student orientation is an important phase of each student's development at Vermont Tech. Held before classes begin, the required orientation gives entering students the opportunity to meet the members of the Vermont Tech community, to understand the
expectations for a successful college experience, to sign up for extracurricular activities, and to settle in before beginning the first semester. A mailing is sent to students prior to the semester with information on orientation dates and activities.

Two to three weeks before the fall and spring terms begin, the college will send accepted applicants detailed instructions on reporting for orientation and registration. This will include information on housing assignments, recommended room furnishings, rules for cars on campus, and other general items.

Student Registration Schedules/Class Listings

Vermont Tech courses are available online at: http://blackboard.vsc.edu. Click on the VSC courses/catalog tab.

Students who have a user name and password may view schedules, grades, and limited demographic data. New students who do not have a user name or password may view course offerings for the upcoming semester using the “search for sections.”

All of the Vermont Tech terms start with the letter “T” For example, the code T06FA translates to the Fall 2006 term at Vermont Tech.

First-year students will be registered by staff and faculty after placement testing results have been reviewed and prior credit information received. Registration for continuing students is completed in the prior term.

Non-Degree Students

Non-degree students may register two weeks prior to the start of the term. Students who wish to enroll for a course or courses but not for a program must meet the prerequisite requirements for the course(s) for which they register and are subject to the same academic regulations and standards as degree students.

Registration for courses is subject to the availability of those courses, with initial priority being given to degree students. Non-degree students may register for classes through the Registrar's Office.

Related Academic Information

Transfer Credit

If an applicant has attended another Vermont State College prior to the 2002 summer term, or another college outside the VSC system, Vermont Tech requires official transcripts from all colleges attended. These should be sent directly to admissions from the college at the time of application.

There is a $25 fee for evaluation of transcripts of work completed outside of the Vermont State Colleges system. This evaluation is normally completed after the student's acceptance of the offer of admission, and the fee is billed to the student's account. Early transcript evaluation can be made for applicants who pay the evaluation fee in advance.
Generally, credit for applicable college courses taken may be granted for those courses completed with a grade of "C-" or better*; however, the transferred grades will not be computed into a student's Vermont Technical College grade point average. Courses taken at an accredited institution on a pass-fail basis may be transferred; however, Vermont Technical College may require the student to obtain a grade equivalent in the course from the institution at which the course was taken. Examinations may be required to show competence of subject material. Vermont Technical College will be the final judge as to what transfer credit it accepts.

Transfer credit varies depending upon a number of factors, such as the student's academic record, the college or university selected, and the program selected. Credits earned at Vermont Tech and the Vermont State Colleges are transferable to other colleges or universities only at the discretion of the receiving institution.

Advanced Standing
Admission candidates may be granted advanced standing in a degree program by:

- Transfer of courses from other accredited post-secondary institutions (see "Transfer Credit" above) advanced placement examination (e.g. CEEB, CLEP); recognized equivalent military or similar courses; credit by challenge examinations (see "Credit by Challenge Exam"); and previous relevant experience.
- Consideration of previous relevant experience for credit is initiated by a completed academic "portfolio" to the department heads through the Dean of Academic Affairs. If approved, the portfolio will be returned to the Registrar's Office with the signatures of approval from the program’s department head, the credit-granting department, and the dean. The college may require a challenge exam in these cases.

Advanced standing toward a degree program is subject to the following restrictions:

- No more than 50% of the total required credits may be obtained by advanced standing.
- No more than 50% of the total technical course credits in an academic program may be obtained by advanced standing.

Summer Programs
Vermont Tech offers a number of summer courses which usually include physics, calculus, technical communication, and computer programming. There is also an intensive, four-week summer preparatory program in math, physics, computers, and English.

* For programs that require a "C" or better, the minimum grade for acceptable transfer credit will be "C."
Academic Affairs

Academic Advising

Vermont Tech is committed to providing comprehensive advising designed to enrich the educational experience of every student. Students are assigned academic advisors, usually within their program department, and are encouraged to meet with them throughout the academic year to discuss their progress and career or transfer plans.

Students having academic or personal difficulties can get extra help from faculty advisors to identify problem areas, clarify educational and personal goals, resolve difficulties, and obtain referrals to other campus services. If students need to change their advisor, they should contact the Office of the Registrar.

Attendance

It is the responsibility of the student to observe the class schedules. Students are expected to attend all classes, work periods, and assemblies, and to be on time.

Absences result in reduced comprehension and lowered academic performance.

The amount of instruction time a student receives is an important factor in the instructor's estimation of the student's performance and grade for the course.

The make-up of any work (including study assignments, homework, reports, and examinations) missed for any reason will be at the discretion of the instructor. Any time a student misses a class, laboratory or other scheduled event, it is his/her responsibility to inform the instructor or individual in charge and to make satisfactory arrangements for any make-up work.

In cases of unusual absence from classes, work periods, and assemblies, and upon the recommendation of the student's instructor, the department chairperson may reprimand the student orally or in writing.

In excessive cases of willful absence, the department chairperson will refer the matter to the Dean of Academic Affairs for determination as to whether the student should be dismissed for excessive absenteeism and/or neglect of academic work.

Athletes must notify their instructors one week prior to any absence.

Participation in varsity athletic contests may be considered excused absences; practices are not excusable absences. Athletes are responsible for all work missed, and the instructor and athlete will make every reasonable effort to establish an acceptable make-up procedure. If no reasonable make-up alternative is possible, academic standing has priority.
Grading System

<table>
<thead>
<tr>
<th>Grade</th>
<th>Quality Points</th>
<th>Numerical Grade Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.0</td>
<td>98-100</td>
</tr>
<tr>
<td>A</td>
<td>4.0</td>
<td>95-97</td>
</tr>
<tr>
<td>A-</td>
<td>3.7</td>
<td>91-94</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
<td>88-90</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
<td>85-87</td>
</tr>
<tr>
<td>B-</td>
<td>2.7</td>
<td>81-84</td>
</tr>
<tr>
<td>C+</td>
<td>2.3</td>
<td>78-80</td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
<td>75-77</td>
</tr>
<tr>
<td>C-</td>
<td>1.7</td>
<td>71-74</td>
</tr>
<tr>
<td>D+</td>
<td>1.3</td>
<td>68-70</td>
</tr>
<tr>
<td>D</td>
<td>1.0</td>
<td>65-67</td>
</tr>
<tr>
<td>D-</td>
<td>0.7</td>
<td>61-64</td>
</tr>
<tr>
<td>F</td>
<td>0.0</td>
<td>Below 61</td>
</tr>
<tr>
<td>P</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Official grades are issued at the end of each semester. In addition, unofficial academic warnings are issued at the mid-point of each term.

Grade Point Average Calculation

The grade point average is determined by dividing the total quality points earned in all courses by the total GPA credits attempted. GPA credits are those taken for a letter grade “A” through “F”. Remedial or zero level courses taken count as GPA credits only in the term taken. They are not calculated in the cumulative GPA.

To calculate cumulative GPA, divide the total quality points by the GPA credits.

Transcripts

Credits earned within the Vermont State College system (Castleton State College, Johnson State College, Lyndon State College, Community College of Vermont) are not considered transfer credit. All VSC courses taken starting in the 2002 summer term will be included and count in the determination of quality points and GPA and on the Vermont Tech transcript.

Grade Amelioration Policy/Forgiveness or Non-use of Grades

One time in an academic career, a student who is changing programs may, with the proper approval(s), have selected grades excluded from the calculation of his or her cumulative Grade Point Average in the new academic program. Grades may only be
excluded for courses required in the old program that are not required in the new or subsequent four-year programs for that degree program. All credits earned in courses excluded from the calculation are lost. This policy does not apply to electives or credits used for any diploma, certificate, or degree already awarded.

For students attempting to ameliorate grades for Vermont Tech courses, the approval of the student’s new program department chair or director is required.

For Vermont Tech students attempting to ameliorate grades from another Vermont State College, the student must have:

- One term and at least 6 credits of satisfactory academic progress (a term GPA of 2.00 or better) following the term for which amelioration is requested; and,
- Must receive approval from the academic dean of the home institution in consultation with the other VSC institution whose grades are to be ameliorated.

Auditing Courses

Tuition charges for an audit course will be 50% of the full applicable per-credit rate. Students registering to audit a course must do so by the end of the add/drop period.

If space is available, students may audit a Vermont Tech course provided they have met all course prerequisites and have obtained the permission of the instructor. The audit course credit hours will not be applied for determining student load or status.

Instructors, in giving permission for an audit, will specify the expectations for student participation as an auditor. Students who successfully audit a course will receive a "AU" grade, which carries no credit or quality points. Students who do not meet expectations of the audit will be dropped from the course with no grade or a "W" grade. Students may not change to an audit status to avoid receiving less than desirable final grades.

Incomplete Work

A grade of Incomplete, "I," applies to work in a course which has not been completed because of illness or other satisfactory reasons. The incomplete work must be made up as specified by the instructor, and no later than halfway through the following term.

The grade for the course will be determined by the quality of the work that is made up, along with previously-completed work. The instructor will determine a default grade that will be entered upon the student's transcript in the event the student fails to complete the assigned work. Any student receiving an "I" grade may enroll in courses for which the "I" grade course is a prerequisite. Continued enrollment in the course is contingent on completion of the course with a passing grade.
Repeated Courses

When a course is repeated and is completed, the initial grade remains on the record but does not count in the grade point average or for credit. The most recent grade earned in a course will be entered on the record and used in computing the term and cumulative grade point averages and class rank. (If a grade other than an earned grade [W, NG], is recorded in the repeated course, both (all) attempts will appear on the record, and the most recent earned grade will be used in computing the cumulative grade point average.)

The English, Mathematics, Electrical, and Physics departments all have courses that have been created for students pursuing the three-year options in various majors; these are "stretched" versions of courses in the two-year programs. If a student who has taken a course designed for the three-year option repeats the equivalent course(s) in the two-year format, or vice-versa, the more recent grades and credit will be substituted in computing the GPA.

Add/Drop Period

The Add-Drop Period is defined as the first two weeks of classes or the first 15% of class meetings for non-regular offerings. Degree students may add or drop a course until the end of the second week of classes. During the second week, degree students may drop with the advisor’s permission. To add a class after the first week, students must have permission of both their advisor and the instructor. A fee is charged for adding or dropping after the second week. Students are responsible to pay for any classes dropped after the second week of classes. Non-degree students must have the instructor’s permission to add a course after the first week.

Dropping a Course

A student who drops a course:

1. during the add/drop period will be dropped from the roster and will receive no grade;
2. after the add/drop period, and until the 60% point of a course, will receive a grade of “W”;
3. after the 60% point students may not drop and will receive an earned grade whether they attend the remaining classes or not;
4. students who fail to drop a course and remain enrolled past the 60% point will receive an earned grade whether they attend classes or not. They are also responsible for costs incurred.

If a student successfully completes a course before withdrawing from the College, he/she will receive from that course’s instructor an appropriate grade. An example of this case is a student who withdraws from the College before the end of the term having passed a self-paced mathematics course before he/she withdraws.
Withdrawal from Vermont Tech

To withdraw from Vermont Tech once the term has started, a student must give written or oral notification to the Office of the Registrar or off-campus site office. A parent or guardian must approve withdrawal requests made by minors. A student who stops attending classes after add/drop and does not inform the College will be considered to have withdrawn after the 60% point of the term, if the last date of an academically related event cannot be determined.

Students will receive grades based on the guidelines specified in *Dropping a Course*.

Non-Returning Students

Students that plan to complete the term and then transfer or otherwise not return to Vermont Tech for the subsequent term should:

1. complete a non-returning student form available at the Office of the Registrar or site office and;
2. complete an exit interview (available through the Financial Aid Office).

Leave of Absence from Vermont Tech

To take a leave of absence once the term has started, a student must request the leave in writing through the Office of the Registrar or the appropriate site office for off-campus programs. A parent or guardian must request the leave for a minor. The leave requires the approval of the Academic Dean.

For a leave of absence to be approved, it is expected that coursework incomplete at the time of the leave can be satisfactorily completed upon a student's return and prior to the expiration of the subsequent term.

If a student fails to return to school at the end of the approved leave of absence or if the student makes a written request to rescind the leave of absence, a withdrawal date will be determined and used for calculation of return of funds and in-school status. The withdrawal date will be the original date of the request for leave or the last date of an academically-related event, whichever is later.

Grades for students on approved leaves of absence will be in accordance with the guidelines specified in *Dropping a Course*, with the exception that “I” or “W” may be used after the 60% point until the end of the leave of absence.

Credit by Challenge Examination

Students who can document course work, private study, or on-the-job or similar experience judged to be equivalent to a Vermont Technical College course may, with approval from the respective department chairperson, receive credit by examination upon satisfactory completion of an "equivalency" examination administered as below:

1. Documentation is submitted (at least three weeks prior to planned date of testing) to the appropriate department chairperson.
2. Documentation is reviewed and accepted as satisfactory by the department chairperson.
3. Application for credit by examination is submitted with payment of a Challenge Exam fee.
4. The examination is satisfactorily completed (the format of such examination is recommended by the respective department chairperson and approved by the Academic Dean).
5. A maximum of 12 credits may be earned toward any one program by challenge exam and these credits are subject to Advanced Standing restrictions.
6. Challenge exams that are taken to replace failed course work must comply with all of the above criteria and document new course work, private study or on-the-job experience since the failure occurred.

Waiver of Courses

A student may have a specific course waived. A student can initiate a course waiver by an academic petition to the Department Chairs through the Dean of Academic Affairs. The petition must be approved by the student's program department and by the department offering the course. A waived course may have to be replaced by an alternative course.

Substitution of Courses

A student may substitute another course for a specific required course if, for some approved reason, such as a physical disability, the student may be unable to take the course. A student can request to substitute by an academic petition to the Department Chairs through the Dean of Academic Affairs. The petition must be approved by the student's program department and by the department offering the course.

Student Class Level

Class level is based on total earned credits toward an academic program. It affects financial aid, class standing, and other calculations regarding student progression. There are two sets of class levels used at Vermont Tech, one for Three-Year Option students and a second for all others. Non-degree students have no class standing.

<table>
<thead>
<tr>
<th>3YRO Programs</th>
<th>Earned Credits</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>0-25.99</td>
<td>3FR</td>
</tr>
<tr>
<td>2nd year</td>
<td>26-50.99</td>
<td>3SO</td>
</tr>
<tr>
<td>3rd year</td>
<td>Above 50.99</td>
<td>SO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All Other Programs</th>
<th>Earned Credits</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year</td>
<td>0-29.99</td>
<td>FR</td>
</tr>
<tr>
<td>2nd year</td>
<td>30-59.99</td>
<td>SO</td>
</tr>
<tr>
<td>3rd year</td>
<td>60-89.99</td>
<td>JR</td>
</tr>
<tr>
<td>4th year</td>
<td>Above 89.99</td>
<td>SR</td>
</tr>
</tbody>
</table>
Credit Overload

A student credit overload is defined as a course load in excess of 19 credits in a single term.

Students with a cumulative GPA of 3.00 or greater may be approved for a load of up to 24 credits in a term. Students with a cumulative GPA from 2.00 to 2.99 may be approved for a load up to 21 credits in a term. Students with a cumulative GPA below 2.00 will not be approved for a term credit overload.

Students with overloads will be reviewed at mid-term for possible load reduction.

Academic Standing

There are three levels of Academic Standing: Good Standing, Academic Probation, and Academic Dismissal.

Good Standing

Degree students are in Good Standing if they meet the enrollment criteria for the term and have a cumulative GPA of 2.0 or better (1.75 for students with less than 30 GPA credits).

Academic Probation

Degree students who are allowed to enroll and who have a cumulative GPA below that required for good standing will be on probation.

Students returning from academic dismissal will be on probation for a minimum of one term.

Probation is not a punitive measure, but rather is used to identify students who may need additional services or help.

Academic Dismissal

Degree students may be academically dismissed for a minimum of one term for:

1. Receiving a term or cumulative GPA below .70;
2. Not achieving “Good Standing” while on probation;
3. Withdrawing from Vermont Tech while on probation;
4. Students may also be dismissed at anytime when the Department Chair and/or Academic Dean determine(s) that continued enrollment would not be appropriate. Student dismissed during the term will receive grades of “F” or “NP” in any incomplete coursework at the time of dismissal.
Appeal of Academic Dismissal

A student who has been dismissed may appeal to the Academic Dean, provided there are mitigating circumstances for his or her performance that may have led to the dismissal. The Academic Dean will review each appeal on a case-by-case basis to determine if there are grounds for reinstatement.

Students “reinstated on appeal” will normally be reinstated on academic probation. Students must also appeal to Financial Aid to have their aid reinstated. This is a separate process from the academic appeal (Refer to the Statement of Satisfactory Progress for Financial Aid section).

Disciplinary Dismissal

Students who are dismissed from Vermont Technical College for non-academic reasons are no longer matriculated students. They are not eligible to enroll in Vermont Technical College courses. These students may apply for readmission through the Admissions Office after two years if they have met the conditions set for them at the time of dismissal. Readmission requires the approval of the Dean of the College.

Returning Students

Previously matriculated students who have not attended Vermont Tech for one term or more (even in instances of courses in major not being offered) should contact the Vermont Tech admissions office by phone, email or in person and inform them of their intention to return to Vermont Tech. Admissions will advise them whether they need to complete a new application or whether they can preregister for the upcoming semester. This determination is based on length of absence, the program the student wishes to enter/re-enter, and other academic considerations.

Returning After Dismissal

Students who have been dismissed from Vermont Technical College may return to Vermont Tech under the following conditions:

1. Students have met the requirements placed upon them at the time of dismissal.
2. Students notify Admissions in writing (by October 15 for spring, or by March 15th for fall) of their intent to return to Vermont Tech.
3. Students are approved for re-admission by Admissions.

Upon receiving notification from Admissions, the Department Chair or program coordinator will determine whether a fall or spring re-admission is most appropriate and send a preregistration to Admissions outlining course work and/or suggested course work prior to re-admission. Admissions will forward returning student information to the Registrar, Housing, and Financial Aid.

- Returning students desiring financial aid will have to appeal to Financial Aid to have their aid reinstated.
- Returning students must complete a housing contract to live on campus.
- Returning students will be on probation and receive increased supervision and academic support for a minimum of one semester.
Changing Programs

If a student wishes to change programs, he/she must petition through the Office of the Registrar and be approved by the appropriate Department Chairperson(s).

Dual or Multiple Majors

If a student wishes to receive credit for a second degree or major, he or she must petition through the Office of the Registrar. If approved, the student must successfully complete at least 15 credit hours for an associate or 30 credit hours for a bachelor of course work beyond the first major for each successive major. This course work will include, as a minimum, all courses required in the successive major(s) not required in the first.

Course schedules are optimized for students with one program and major taking a full course load; because of this, dual majors typically require a minimum of an extra year at Vermont Tech.

A student with multiple majors will be awarded one degree with the additional majors annotated on his or her diploma.

Graduation Standards

A Vermont Technical College degree demonstrates not only accomplishment in the major field and general education, but acquisition of fundamental, transferable skills required for success in today’s world. For this reason, Vermont Technical College is committed—as are all of the Vermont State Colleges—to ensuring that graduates have achieved proficiency in written and oral communication, quantitative reasoning, and information literacy.

All students entering Vermont Tech in Fall 2006 will be required to demonstrate competence in written communications, information literacy, quantitative reasoning, and oral communication prior to and as a requirement for graduation. Students will have more than one opportunity to meet the expected level of performance.

All transfer students are required to take all graduation standards except:

- anyone with a bachelor’s degree or higher;
- per VSC policy, a student who has completed the assessments at another VSC college;
- a student who is granted a special exemption by the Dean of Academic Affairs.

Graduation Requirements

1. Have a 2.00 cumulative GPA;
2. Complete 30 of the last 39 credits at Vermont Tech;
3. Complete at least 50% of the coursework at Vermont Tech or 15 credits minimum for programs of less than two years;
4. Satisfy all financial obligations to Vermont Technical College; and
5. Apply for graduation.

(continued on next page)
The department chairperson will approve program candidates who satisfy the above, as attested by the Registrar, to the full college faculty for recommendation to graduate. Any faculty members knowing, or having questions about any candidate will voice their concerns at this time. If it is found that any candidate has not satisfied the graduation requirements, his or her name will be removed from the graduation list.

Time Limitation on Graduation Requirements

Normally, a student is expected to finish a program with continuous enrollment in the specified number of terms outlined in the curriculum for his or her program. Students that leave the college for a full-term will be assigned the requirements for the catalog that is in effect in the year of their return and will be expected to meet any new requirements for that catalog year, unless the sponsoring department approves an earlier catalog year.

Each student operates under degree requirements in effect at the time of initial acceptance as a degree candidate. If, after two years for a certificate, four years for an associate’s, or six years for a bachelor’s, the degree requirements have not been met, the student must satisfy the graduation requirements in effect during the student’s year of graduation.

A student participating in a College-sponsored part-time degree program has two years from the conclusion of the last scheduled course in the sponsored program to complete the degree requirements. After this time, if the degree requirements have not been met, the student must satisfy the graduation requirements in effect during the student’s year of graduation.

Requirements for Participating in Graduation

Commencement is an important celebration of students’ academic success, as well as an opportunity for family, friends and future employers to recognize those efforts in a formal manner. Academic credentials such as a certificate, associate and bachelor degrees are important benchmarks in student learning. All students are strongly encouraged to attend commencement.

There are two ways students may participate in the commencement ceremony.

1. Students who successfully complete all graduation requirements and are recommended by their departments will graduate and receive a diploma.
2. Students who have completed all but a few of the graduation requirements, have applied to walk or graduate on their application and with the recommendation of their department and the college faculty may participate as “walkers.” Although “walkers” participate in the graduation ceremony, they will not actually graduate until they have successfully completed all the graduation requirements and are so recommended by their departments.
3. “Walkers” that subsequently complete their degree requirements must apply for a diploma that will be mailed after college faculty approval.
Honors

At the end of each term, degree students who have attained the following term grade point average while carrying 12 or more graded credit hours and who have not received a failing or incomplete grade in any subject during that semester will be accorded academic honors:

3.5 Deans’ List 4.0 President’s List

Honor Societies

Vermont Technical College students may qualify for membership in three national honor societies – the Beta Beta Lambda Chapter of Phi Theta Kappa, and the Vermont Alpha Chapter of Tau Alpha Pi, and the Sigma Phi Alpha Dental Hygiene Honor Society.

Phi Theta Kappa is a national honor society formed to recognize and encourage scholarship, academic excellence, leadership, and service among two-year college students.

Requirements for candidacy:
- 3.5 cumulative GPA with no incomplete grades;
- Sophomore status; and
- Must be working toward an Associate degree with a **minimum of 12 credits completed at Vermont Tech.**

Tau Alpha Pi is the national honor society for associate and baccalaureate degree students in engineering technology. Its purpose is to recognize academic excellence in fields of engineering technology study and to encourage a lifetime commitment to learning and scholarship.

Requirements for candidacy:
- 3.5 cumulative GPA with no incomplete grades;
- Minimum of 24 credits completed at Vermont Tech while in an engineering technology program;
- Engineering technology students with more than 48 credits may be considered with a 3.3 or better cumulative GPA.

Sigma Phi Alpha is the national honor society for dental hygiene students. It was formed to recognize, promote and honor outstanding scholarship, service and character among students or graduates of dental hygiene schools in the U.S. and Canada. Second year dental hygiene students who rank highest in scholarship and character and who exhibit potential qualities for future growth are upon recommendation of the full-time dental hygiene faculty, elected to this prestigious group. Membership is limited to ten percent of the graduating class.
Graduation Honors

To be eligible for graduation honors, a degree student must:
1. Have 30 credits for an associate degree and 60 credits for a bachelor degree completed within the VSC.
2. Have achieved the following cumulative GPA for all coursework:
 - 3.5 Cum Laude
 - 3.7 Magna Cum Laude
 - 3.9 Summa Cum Laude

To be eligible for graduation honors, a Certificate student must:
1. Complete 50% of the degree requirements within the VSC system
2. Have achieved the following cumulative GPA for all coursework:
 - 3.0 Honors
 - 3.5 High Honors

Awards

Each year a number of students receive awards for distinguished performance, noteworthy improvement, and/or superior service and dedication to the College. A student who fulfills the requirements for two degrees is eligible for awards in both majors. Full-time students who are degree candidates are eligible for these awards:

- The American Society of Civil Engineers Awards to graduating seniors for the highest academic average and greatest all-around academic development in the Civil Environmental Engineering Technology program.
- The Angus A. Murray Athletic Award to the individual who demonstrates selfless dedication to the College's athletic program.
- The Angus A. Murray Award for Excellence in Writing to a returning student who demonstrates greatest overall excellence in writing in Vermont Tech’s two required English courses.
- The Business Technology & Management Faculty Awards to graduating seniors for the highest academic average and greatest all-around academic development in this program.
- The Computer Engineering Technology Awards to graduating seniors for the highest academic average and greatest all-around academic development in this program.
- The Dental Hygiene Peer Recognition Award is given to a second year dental hygiene student who, in the opinion of their fellow classmates exhibits the interest, attitude and cooperative spirit desirable in a dental hygienist. This award will be given out at the Vermont Technical College pinning ceremony on graduation day.
- The Dorothy Wootton Outstanding Clinician Award from the faculty of the Department of Dental Hygiene is awarded to the graduating student who best demonstrates outstanding clinical performance.
- The Edward F. Kibby Memorial Award, from the Vermont Tech Alumni Association, to the athlete who has displayed the most outstanding sportsmanship throughout the year.
• The Edward H. Jones Testimonial Fund Award to the graduating senior who has shown the greatest all-around academic development in an agricultural technology program.

• The Faculty Award is given to a graduating student who, while attending Vermont Technical College, has made the greatest contribution to student activities.

• The Institute of Electrical and Electronics Engineers Awards to graduating seniors for the highest academic average and greatest all-around academic development in the Electrical Engineering Technology program.

• The Lambda Beta Society is a national honor society for the profession of respiratory care and students are proposed for membership if they are in the final semester of the respiratory therapy program and rank in the top 25% of the graduating class.

• The Landscape Development & Ornamental Horticulture Faculty Awards to graduating seniors for the highest academic average and greatest all-around academic development in this program.

• The Practical Nursing program recognizes clinical excellence through academic awards that are specific to the individual PN nursing campuses. Graduation awards are given at the

 • Putnam/Bennington Campus, Thompson/Brattleboro Campus, Fanny Allen/Williston Campus and at the Randolph Center Campus. Additional awards are also awarded under the college’s extended campus designation.

• The Nursing Program Awards to graduates of the Associate’s Degree Nursing program–from the Vermont State Nurses Association, for clinical excellence, and from the Nursing program, for academic excellence.

• The Paul Calter Scholarship award is presented to the student who, in the opinion of the Mathematics Department faculty, has shown the best performance in the regular mathematic sequence–MAT 1420 and MAT 1520 for the last year.

• The Respiratory Therapy Program Award goes to a graduate of the Associate of Science degree for academic excellence.

• The Robert S. Brady Memorial Award, from the Vermont Chapter of the American Institute of Architects, to the graduating senior who has shown the greatest all-around academic development in the Architectural and Building Engineering Technology program.

• The Ruth Freeman Memorial Award to the graduating senior with the highest academic average in the Architectural and Building Engineering Technology program.

• The Rutland County Alumni Award to the graduating senior who is the Rutland County resident, with the highest academic average.

• Sigma Phi Alpha Dental Hygiene Honor Society. National Dental Hygiene Honor Society organized to recognize, promote and honor outstanding scholarship, service and character among students or graduates of dental hygiene schools in the US and Canada. Second year dental hygiene students who rank highest in scholarship and character and who exhibit potential qualities for future growth are upon recommendation of the full time dental hygiene faculty, elected to this prestigious group. Membership is limited to ten percent of the graduating class.
• The Society of Manufacturing Engineers, Twin States Chapter 40, Awards to graduating seniors for the highest academic average and greatest all-around academic development in the Mechanical Engineering Technology program.

• The Stanley G. Judd Memorial Fund Award, from the Vermont Tech Alumni Association, to the graduating senior with the highest academic average in an agricultural technology program.

• The Student Engineering Technician of the Year Award, to a senior selected from nominations from the engineering technology departments for outstanding scholarship, character, and leadership.

• The Vermont Association of Professional Horticulturists' Student Award is given to a "second-year student in the Landscape Development and Ornamental Horticulture Program who exemplifies the qualities of a professional in their field: motivation, direction, leadership and respect for both humans and the natural environment." The recipient must have earned at least 30 credits and hold a GPA of 3.0 or greater.

• The Vermont Automobile Dealers Association Awards to graduating seniors for the highest academic average and greatest all-around academic development in the Automotive Technology program.

• The Vermont Dental Hygienists' Association Membership Spirit Award is given to the graduating dental hygiene student who exhibits a high level of professional pride and enthusiasm for the profession of dental hygiene.

• The Vermont Tech Faculty Memorial Fund Scholarship, created by the faculty as a living memorial to the men and women who served on the faculty and have passed away, is awarded to a student who has completed the freshman year in a program and whose outstanding scholarship exemplifies excellence in technology.

• The Vermont Veterinary Medical Association Awards to graduating seniors for the highest academic average and greatest all-around academic development in the Veterinary Technology program.

• The W. Newton Ryerson Award for Excellence in Freshman Mathematics and Physics to a returning student with a grade point average of 3.5 or higher in the freshman mathematics and physics courses who demonstrates excellence in laboratory performance; and who demonstrates a positive general attitude as shown by class and/or laboratory participation and/or assisting other students.

• Who's Who Among Students at American Junior Colleges—each department nominates students for this honor, given for academic achievement, community service, leadership in extracurricular activities, and potential for success.

Honesty and Ethics

Vermont Technical College expects high standards of truthfulness and honesty in all academic work. Thus, any student who, after a hearing, is found guilty of academic dishonesty will face disciplinary action, up to and including dismissal from the college. Cheating refers to using unauthorized aids or copying another person's work on exams, quizzes, and assignments.

Plagiarism means taking language, information, or ideas, either exactly or in paraphrase, from another person or from a printed source without giving credit to the source.
Computer Software

The College has licensed (not purchased) the use of computer software for instructional use on college-owned computers. It is a criminal offense to copy this software.

Students will be allowed to use legally licensed software on the computer(s) for which it is licensed. The college will not authorize or tolerate any other use or copying of these materials.

Student Support Center

A number of services are provided by the staff at the Student Support Center to help students meet their academic, personal and career goals.

These include academic and personal counseling, study skill assistance, Learning Center services, services for students with disabilities, and the Student Support Services/TRIO Program. Students enrolled in programs at sites other than Randolph Center or Williston should contact their site coordinator to arrange for tutoring, career information, placement, counseling, and disabilities services.

Student Support Services/TRIO Program

The SSS/TRIO Program at Vermont Tech provides support services designed to increase student retention/transfer and graduation.

Funded by a special grant from the U.S. Department of Education, SSS/TRIO provides services to first-generation college students, low-income students, and students with disabilities. This program is widely used by students for personal, academic, and career counseling assistance in transferring to bachelor's degree programs, improving study skills, developing reading and writing skills, individual tutoring, workshops, peer advising, support groups, cultural events and field trips.

Academic Counseling

Academic counseling includes a variety of services designed to help students concerned about reaching their academic goals.

Counselors provide informal academic assessments; academic and vocational counseling; and individual help with writing and study skills such as managing time, reading textbooks, and note taking and testing.

Referrals for individual tutoring with professionals in specific courses are also available.

Personal Counseling

The primary objective of personal counseling at Vermont Technical College is to provide academic support—specifically the retention and graduation of our students. Some students experience psychological and social difficulties that interfere with their academic success. Personal counseling services focus on transitional or temporary issues and include brief counseling interventions, academic monitoring with probation students and psychoeducational programming. The personal counselor does not provide ongoing treatment for students with more serious mental health concerns, but will help those students in locating appropriate community treatment resources. Incoming Vermont Tech students with pre-existing mental illness should consider contacting the college’s Disability Coordinator to discuss their illness and any residential or academic accommodations they may require.
Services for Students with Disabilities

Prior to enrollment, students with any type of disability are encouraged to identify their disability to the Learning Skills Specialist to arrange necessary accommodations.

Interviews and phone calls to address your particular concerns are welcome at any time during your admission process and while you are a student at Vermont Tech. All information regarding a disability is kept in strict confidence and is never entered in a student's academic record.

Available services include: academic counseling; student support group; classroom accommodations (which may include, but are not limited to extended time on tests, reduced course load, use of a tape recorder for lectures, and oral exams); and assistance in obtaining auxiliary aids such as taped texts or interpreters.

Career/Transfer Center

The Career/Transfer Center provides assistance with career and college transfer decision making and job placement; occupational information, including company literature, job postings, reference books, computer software, etc.; college information, including college catalogs, applications, transfer scholarship information, articulation agreements, and more; and individual assistance and workshops on writing resumes, job hunting strategies, and job interviews.

Because Vermont Tech maintains close ties to industry through field trips, an annual career fair, mentoring, and guest speakers, spring is a busy recruiting season on campus.

The Learning Center

The Learning Center in Conant Hall, room 212, provides a wide range of academic services, including tutoring, test review sessions, supplemental instruction, and study groups.

Tutoring, offered on a drop-in, on-call, and scheduled basis, is especially popular. Many students use the Learning Center when they need to ask quick questions in physics, review for a calculus final, enhance their understanding of DC circuits, or brush up on rusty computer skills, study with classmates, or work in a quiet place.

Writing and Communication Centers

The Writing & Communication Centers (WCC) located in Conant Hall on the Randolph campus and at the Williston campus offers one-on-one tutoring for any Vermont Tech student who wants to strengthen reading, writing, oral presentation, or study skills. The WCC also provides access to a variety of assistive technology software programs and hardware designed to help students with scanning, editing, or dictating documents; having documents read aloud by the computer for editing; and developing or organizing information. In addition, the English as a Second Language computer programs are housed in the WCCs, providing opportunities for students to study and practice vocabulary, grammar, and pronunciation.

Public Notice Designating Directory Information

Currently enrolled students may withhold disclosure of personally identifiable, directory-type information under the Family Educational Rights and Privacy Act (FERPA). To withhold disclosure, written notification must be received in the Registrar's Office prior to the start of the third full week of classes. Forms requesting the withholding of "Directory Information" are available in the Registrar's Office.

Vermont Technical College assumes that failure on the part of any student to specifically request the withholding of "Directory Information" indicates individual approval for disclosure.
Student Right-to-Know (SRK)

Students will receive graduation rate information during orientation. This information is available to prospective students upon request.

Student Records Review and Release

Annually, Vermont Technical College informs students of the Family Educational Rights and Privacy Act. This Act was designated to protect the privacy of educational records, to establish the right of students to inspect and review their educational records, and to provide guidelines for the correction of inaccurate or misleading data through informal and formal hearings. Students also have the right to file complaints with the Family Educational Rights and Privacy Act (FERPA) Office concerning alleged failures by the institution to comply with the Act.

The Student Handbook explains in detail the procedures to be used by the institution for compliance with the provisions of the Act. The college has the policy of disclosing educational records to Vermont Tech and Vermont State College officials with a legitimate educational interest without prior consent. Questions concerning FERPA may be referred to the Registrar.

Transcripts

A transcript is a copy of a student's permanent record of attendance at the College and cannot be altered. Current or former students may request that the College issue an official transcript of his/her record to any school, employer, or other agency. There is no fee for transcripts. For each transcript, students must submit a written, signed request to the Registrar's Office.

Transcripts will be sent as soon as possible. Please allow a minimum of five days for normal processing and three weeks following the end of a term. Transcripts will not be sent for a student who has not satisfied financial obligations with the College.

Vermont State Colleges Enrollment Consortium Agreement

By agreement of the five Vermont State Colleges (Castleton, Lyndon, Johnson State Colleges, Vermont Tech, and the Community College of Vermont), students enrolled at any VSC institution may simultaneously enroll in courses at other VSC institution and receive full credit for those courses at their "home" college. The agreement eliminates duplication of registration or other enrollment fees, and students receive financial aid based upon their total credit enrollment within the VSC. Course-specific fees of $100 or more are reimbursed by the student to the institution where those fees are incurred.

Students seeking to benefit by the dual enrollment agreement must ensure that course work will meet program requirements at the home institution prior to enrolling at the other VSC institution. Students enrolled in the LPN program are not eligible for the VSC enrollment consortium because of the divergent calendar of the LPN program.

Courses taken at any VSC institution will be included in GPA calculations at the home institution.

Students that desire to enroll exclusively at another VSC school other than their home institution may do so for a maximum of two terms. To be eligible for this, students must be matriculated at the home institution and secure written permission in advance of their enrollment from the home institution.

Students desiring to have previous VSC course work excluded from their Vermont Tech GPA after one term at Vermont Tech should review the Grade Amelioration Procedure.
Student Affairs

Student Conduct

Vermont Technical College students have a strong sense of educational purpose, cooperative spirit, and a willingness to live comfortably within the college community without losing their sense of individuality. Still, there are many adjustments that students must make to pursue a college education successfully, and at times, students need guidance in making decisions about college, their personal lives, or their overall objectives.

To help students with such decisions, the college faculty and staff stand ready to offer assistance, ranging from friendly advice to consideration of more serious problems. There are also limited professional counseling services available on campus to assess and refer students to community resources.

Published in the Student Handbook are guidelines and regulations on conduct. These exist to aid students in making the transition to college life and to outline some of the characteristics a student needs to fit comfortably into campus life. These regulations are subject to change by the posting of notices on campus bulletin boards and the college web site.

All students are expected to exhibit satisfactory conduct at all times, and the college reserves the right to take action, up to and including dismissal, against students whose behavior violates college regulations. In all instances of disciplinary action, the college is committed to providing the student an opportunity for due process. As an institution of higher education, the college expects its students to follow behavioral standards above those of the population, in general.

In support of this concept, Vermont Technical College believes that gaining maturity is a fundamental ingredient of education and that self-reliance and self-discipline are two qualities the college tries to instill in its students.

Residential Living Mission Statement

The members of the Residential Living staff strive, through programming, to promote student development on a comprehensive scale and are dedicated to encouraging students to take pride in themselves and the pursuit of a positive college experience. These staff members assist students to assume responsibility for their actions and choices.

Hall directors and resident assistants support students as they prepare themselves for future challenges by helping them to understand their limitations and to know their potential through the exploration of personal, academic and vocational interests. Students are guided as they develop personal integrity and respect for others through an examination of individual values and goals with relation to today's changing society.
Residence Hall Occupancy

It is a condition of enrollment at Vermont Technical College that all full-time students who are not living in the immediate area (30 mile radius) of the college with their immediate families live in college housing for the first two years of enrollment. Exceptions may be made by the Director of Student Life based upon consideration of an individual's special case. In all cases of exception, written application for permission to live off campus should be made to the Director of Student Life. The written application should contain full reasons for the request and must be accompanied by documentation to support that request. The burden for providing documentation rests with the student. Application for release does not imply automatic permission to reside off campus. Students are advised not to sign contracts or leases on non-college housing until they have been formally notified of their release from the requirement.

Dining Hall

It is a condition of admission to Vermont Technical College that students living in residence halls on campus are required to purchase a meal plan.

Students who do not live on campus are welcome to purchase a meal plan. They may also pay at the door of the dining hall for individual meals or may purchase one of three commuter meal plans at the food service office.

Care of College Property

The college provides a well-equipped and well-maintained educational plant for use by the students enrolled in its courses. The plant is an expensive one, and the students are expected to be as careful of it as is humanly possible. Students will be required to pay for property which is damaged through their negligence or carelessness. In the event of damage caused by a group, charges will be apportioned among members of the group. Vermont Technical College students are responsible for on-campus damage caused by their guests.

Student Automobiles

Students living on or off the Randolph Center campus are permitted to have one motor vehicle on campus, and all motor vehicles must be registered at the Campus Security Office within two business days of their arrival on campus. Campus Security will issue a parking permit for a nominal charge.

Rules for operation and parking of motor vehicles on campus are printed in the Student Handbook and must be observed.

All students must advise the college of any change of state registration number, change of motor vehicle, or change of insurance coverage. The local residential address of the student must also be provided.

Regulations for the Williston campus and all nursing sites are available through the site directors at those sites.
Student Health

Students attending Vermont Technical College must maintain personal health insurance coverage. Proof of such coverage must be furnished prior to registration. In cases where a student is not covered under his/her own, or family's policy, s/he will be required to purchase the basic health policy offered through the college.

The Randolph Center campus maintains an on-campus Health Center where a physician is on campus two mornings during the week for consultation, referrals, and/or seeing students who may be ill.

In case of accidents, injury, or serious illness, students may be admitted to the Gifford Medical Center in Randolph at the request of one of the area doctors. In such cases, the student's insurance company pays for the expense incurred within the limits of the policy.

A wide range of services is provided by a full-time personal counselor and a part-time drug and alcohol counselor. Students can receive help with stress, relationship problems, homesickness, adjustment issues, substance use and abuse, and referral to outside agencies.

Vermont Tech maintains a close relationship with local community mental health agencies for emergency services and consultation. Community mental health services are available to provide counseling services for students in crisis and on a referral basis.

All students, regardless of age, are required to have a completed medical history form on file in the Health Center, including an up-to-date immunization record (as required by state law) and either a chest X-ray or PPD skin test for tuberculosis. Failure to do so may result in cancellation of registration. Prior to initial registration, students will receive the required medical history form from the Admissions Office.

The college reserves the right to exclude from classes and/or campus activities, or send home any student who, in the judgment of college authorities, is not medically qualified to carry on the regular duties required of Vermont Technical College students. Students returning to the college from medical leave must present a statement from the appropriate professional clinician that they are able to return to continue their studies and, if necessary, provide evidence that appropriate arrangements for follow-up treatment have been made.

The college has exerted and will continue to exert every effort to avoid accidents, but incorporates the following statements as part of the understanding between itself and its students:

"The Vermont State Colleges, its officers, agents, and employees, assume no liability, expressed or implied, for the results of sickness or accidents involving personal injury to any student, whether in connection with the college instruction program wherever conducted, or incidents or other activities on the college properties or elsewhere. Filing of an application carries with it approval and consent with respect to the college policy governing accidents or illness as herein set forth."
Athletics

The Vermont Technical College Department of Athletics and Intramurals, located in the Student Health and Physical Education (SHAPE) building, maintains a variety of varsity and intramural sports programs.

At the national level, Vermont Tech competes in the National Association of Intercollegiate Athletics (NAIA) and the United States Collegiate Athletic Association (USCAA). At the regional level, the college competes in the Sunrise Conference (NAIA) and Yankee Small College Conference (USCAA). It is a requirement for participation in intercollegiate sports that a student maintain an acceptable level of academic performance. This standard is set forth in college policy #311 and is available on the Blackboard portal.

Intercollegiate sports are men's and women's soccer, men's and women's basketball, men's and women's volleyball, men's baseball, and co-ed intercollegiate competition in golf and cross country. Intramural competition in soccer, flag football, hockey, basketball, volleyball, softball, bowling, and tennis are typical. Club sports have included hockey, indoor soccer and snowboarding.

The SHAPE building houses a 25-yard, 6-lane swimming pool, two racquetball courts, a double-court gymnasium, and a climbing wall. The weight room and fitness facilities are located in Nutting Hall.

Student Government and Activities

The Student Council, supports a variety of clubs, including the student radio station, WVTC-FM.

Student chapters of professional organizations include the Society of Manufacturing Engineers, Instrumentation Society of America, American Society of Civil Engineers, National Association of Veterinary Technology of America, and the American Institute of Architects. Additionally, clubs are also available related to varied student interest such as: music, computers, gaming and alternative energy.

The Director of Student Life, in conjunction with the Campus Activities Team, is responsible for campus-wide programs. In addition, there are a variety of off-campus trips such as a professional sporting events or holiday shopping in Boston or Montreal, or night skiing at Bolton Valley or Stowe. Tickets are also made available to concerts, and other cultural events. The director serves as a resource person to all student organizations and their advisors. S/he is able to assist organizations to function more effectively.

Emergency Loans

A student who needs money for a short-term emergency may borrow up to $100. Loans must be re-paid within 30 days or, in any case, prior to the student's terminating Vermont Technical College enrollment. A service fee is charged for these loans. Applications are available from the Dean of the College on the Randolph Center campus or from the Site Director.
Tuition & Fees - 2006-2007

Estimated Costs of Attendance

Students are responsible for familiarizing themselves with the costs descriptions, payment and refund policies, and the definition of residency for tuition payment purposes as detailed below. In the proceeding cost charts all charges are based on fulltime enrollment (12-19 credits per semester) and are subject to change. Part-time and non-degree students should see the “Per Credit Tuition and Fees” heading of this section of the catalog to read information on specific costs.

Cost Chart One--Fall & Spring Terms

All Programs Except Nursing & Dental Hygiene

* see cost charts two and three for nursing and dental hygiene expenses

<table>
<thead>
<tr>
<th></th>
<th>Vermont Residents Term</th>
<th>Vermont Residents Year</th>
<th>Non-Vermont Residents Term</th>
<th>Non-Vermont Residents Year</th>
<th>RSP/NEBHE Program Term</th>
<th>RSP/NEBHE Program Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$4,092</td>
<td>$8,184</td>
<td>$7,800</td>
<td>$15,600</td>
<td>$6,132</td>
<td>$12,264</td>
</tr>
<tr>
<td>Double Room</td>
<td>2,067</td>
<td>4,134</td>
<td>2,067</td>
<td>4,134</td>
<td>2,067</td>
<td>4,134</td>
</tr>
<tr>
<td>Board (Gold meal plan)</td>
<td>1,404</td>
<td>2,808</td>
<td>1,404</td>
<td>2,808</td>
<td>1,404</td>
<td>2,808</td>
</tr>
<tr>
<td>Student Activity Fee</td>
<td>90</td>
<td>180</td>
<td>90</td>
<td>180</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td>Campus Dev. Fee*</td>
<td>75</td>
<td>150</td>
<td>75</td>
<td>150</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>Orientation Fee**</td>
<td>95</td>
<td>190</td>
<td>95</td>
<td>190</td>
<td>95</td>
<td>190</td>
</tr>
<tr>
<td>Health Insurance***</td>
<td>810</td>
<td>1,235</td>
<td>810</td>
<td>1,235</td>
<td>810</td>
<td>1,235</td>
</tr>
<tr>
<td>Total</td>
<td>$8,633</td>
<td>$16,881</td>
<td>$12,341</td>
<td>$24,297</td>
<td>$10,673</td>
<td>$20,961</td>
</tr>
</tbody>
</table>

* Applies only to students attending classes at the Randolph Center campus.

* New students only--Fall semester rate is $190. Spring incoming rate is $95; one-time charge for 1st semester enrolled.

** Required if not covered by another medical plan. The one-semester rate of $810 applies to Spring semester incoming students only. $1,235 is the annual rate for all fall students.

Other Estimated Expenses

Books, transportation, personal needs............................... (term) $1,225 (year) $2,450
Automotive student tools...$2,000
Cost Chart Two–Nursing

For further information concerning estimated costs of attendance for the Nursing Programs, contact the Vermont Tech Business Office at 1-800-600-9830. Program costs here are detailed based on annual full-time cost of the program, not on a per-semester rate.

<table>
<thead>
<tr>
<th></th>
<th>Vermont Residents</th>
<th>Non-VT Residents</th>
<th>RSP/NEBHE Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$8,184</td>
<td>$15,600</td>
<td>$12,264</td>
</tr>
<tr>
<td>Double Room</td>
<td>4,134</td>
<td>4,134</td>
<td>4,134</td>
</tr>
<tr>
<td>Board (Gold meal plan)</td>
<td>2,808</td>
<td>2,808</td>
<td>2,808</td>
</tr>
<tr>
<td>Student Activity Fee</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>Campus Dev. Fee*</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Orientation Fee**</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>Health Insurance***</td>
<td>1,235</td>
<td>1,235</td>
<td>1,235</td>
</tr>
<tr>
<td>Total</td>
<td>$16,881</td>
<td>$24,297</td>
<td>$20,961</td>
</tr>
<tr>
<td>Total Off Campus</td>
<td>$9,939</td>
<td>$17,355</td>
<td>$14,019</td>
</tr>
<tr>
<td>Room/Board****</td>
<td>6,942</td>
<td>6,942</td>
<td>6,942</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Vermont Residents</th>
<th>Non-VT Residents</th>
<th>RSP/NEBHE Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$11,253</td>
<td>$21,450</td>
<td>$16,863</td>
</tr>
<tr>
<td>Double Room</td>
<td>4,834</td>
<td>4,834</td>
<td>4,834</td>
</tr>
<tr>
<td>Board (Gold meal plan)</td>
<td>3,751</td>
<td>3,751</td>
<td>3,751</td>
</tr>
<tr>
<td>Student Activity Fee</td>
<td>252</td>
<td>252</td>
<td>252</td>
</tr>
<tr>
<td>Campus Dev. Fee*</td>
<td>204</td>
<td>204</td>
<td>204</td>
</tr>
<tr>
<td>Orientation Fee**</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>Health Insurance***</td>
<td>1,235</td>
<td>1,235</td>
<td>1,235</td>
</tr>
<tr>
<td>Total</td>
<td>$21,179</td>
<td>$31,916</td>
<td>$27,329</td>
</tr>
<tr>
<td>Total Off Campus</td>
<td>$13,134</td>
<td>$23,331</td>
<td>$18,744</td>
</tr>
<tr>
<td>Room/Board****</td>
<td>8,585</td>
<td>8,585</td>
<td>8,585</td>
</tr>
</tbody>
</table>

* Applies only to students attending classes at the Randolph Center campus.
** Cost is fall semester rate.
*** Required if not covered by another medical plan.
**** Room and board only available on the Randolph Center campus.

Other Estimated Expenses

Books, transportation, personal needs (term) $1,225 (year) $2,450
Nursing uniforms .. $250
Cost Chart Three–Dental Hygiene

<table>
<thead>
<tr>
<th></th>
<th>Vermont Residents</th>
<th>Non-Vermont Residents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Term</td>
<td>Year</td>
</tr>
<tr>
<td>Tuition</td>
<td>$5,124</td>
<td>$10,248</td>
</tr>
<tr>
<td>Double Room</td>
<td>2,067</td>
<td>4,134</td>
</tr>
<tr>
<td>Board (Gold meal plan)</td>
<td>1,404</td>
<td>2,808</td>
</tr>
<tr>
<td>Student Activity Fee</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td>Campus Dev. Fee*</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>Orientation Fee**</td>
<td>95</td>
<td>190</td>
</tr>
<tr>
<td>Health Insurance****</td>
<td>810</td>
<td>1,235</td>
</tr>
<tr>
<td>Total</td>
<td>$9,665</td>
<td>$18,945</td>
</tr>
</tbody>
</table>

* Applies only to students attending classes at the Randolph Center campus.
** New students only–fall semester rate is $190. Spring incoming rate is $95.
*** Required if not covered by another medical plan. The one-semester rate of $810 applies to spring semester incoming students only. $1,235 is the annual rate for all fall students.

Other Estimated Expenses

Books, transportation, personal needs ... (term) $1,225 (year) $2,450
Clinic attire, uniforms, shoes, laundry, etc $1,000
Dental instruments & lab material .. $1,300
Second Year Examinations & Licensure .. $975

Optional Room & Board Rates Per Semester

Below are a list of fees to consider.

Double Room ... $2,067
Single Room ... $2,617
Triple Room ... $1,857
Gold Meal Plan is unlimited with $50 points at snack bar $1,404
12-Meal Plan with $75 points at snack bar $1,351
8-Meal Plan with $110 points at snack bar $1,299
Overnight rooms can be arranged for emergencies $10 per night

Other Fees–All Programs

Below are a list of fees to consider.

Allied Health Programs Liability Insurance Fee $25
Application fee (due when applying for admission) $35
Course Change .. $14
Challenge Exam Fee .. $50
Deferred Payment Fee .. $50
Degree Audit/Graduation .. $64
Late Class Registration .. $42
Late Financial Clearance Fee ... $100
Non-degree Student Registration Fee (per semester) $50
Returned Check Fee ... $25
Parking Sticker ... $40 Fall / $20 Spring
Portfolio Assessment .. $50
Transcript Evaluation .. $25

Per Credit Tuition and Fees

Degree-seeking students registered for 12 credit hours or more are full-time students and expenses are set forth under cost charts one through three on the preceding pages. Overload status fees apply to class loads of 20 or more credit hours per semester. Overload credit hours are billed at the rates below. Degree-seeking students registered for fewer than 12 credit hours are considered part-time students and are charged on a per credit basis as indicated below. Non-degree-seeking students are charged for all credits.

Tuition (Non-Dental Hygiene)

- In-state ... $341
- Non-Vermont Resident .. $650
- RSP/NEBHE Student Program $511
 (Regional student program/NEBHE cost shown as money due after NEBHE credit is applied.)

Dental Hygiene

- Vermont Resident .. $427
- Non-Vermont Resident ... $1,069

Fees

- Degree Student Activity Fee (per credit hour-max. 12 credits) $ 8
- Non-degree Student Registration Fee (per semester) $50
- Randolph Campus Development Fee (Per credit hour - max. 12 credits) $6
- Summer Student Activity Fee No Charge

Summer Costs 2007

Summer tuition is charged on a per-credit basis as follows:

- Vermont Resident (Non-Dental Hygiene) $341
- Non-Vermont Resident (Non-Dental Hygiene) $511
- RSP/NEBHE Student Program (Non-Dental Hygiene) $511
- Vermont Resident (Dental Hygiene) $427
- Non-Vermont Resident (Dental Hygiene) $641

Senior Citizen Discount

Non-degree seeking Vermont citizens age 65 and above will be given a 100% reduction on their tuition costs.
RSP-Approved Programs

Vermont Technical College participates in the Regional Student Program (RSP) of the New England Board of Higher Education. Under this agreement, students from other New England states pay 150% of the in-state tuition per academic year if the student enters a program eligible for tuition reduction (indicated by "s" on the following chart) under the RSP pact. A program not generally eligible because it is also offered in a student's home state may be eligible if the student's legal residence is closer to Vermont Technical College than to the home state institution. For details, contact the Office of Admissions.

RSP-Eligible Programs 2006-2007

<table>
<thead>
<tr>
<th>Program</th>
<th>CT</th>
<th>MA</th>
<th>ME</th>
<th>NH</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agribusiness</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Architectural/Building (2 yr.)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Architectural Eng. Tech. (4 yr.)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Automotive Technology</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Business Technology & Mgt. (2 yr.)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Business Technology & Mgt. (4 yr.)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Civil/Environmental Eng Tech.</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Computer Eng. Tech. (2 yr.)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Computer Eng. Tech. (4 yr.)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Construction Practice & Mgt</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Dairy Farm Management</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Electrical Eng. Technology (2 yr.)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Electromechanical (4 yr.)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Information Technology</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Landscape Devel./Horticulture</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Licensed Practical Nursing (CT)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Veterinary Technology</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

New York Residents Good Neighbor Policy

Reduced tuition rates are available for residents of New York state. Please contact the Office of Admissions to see if you are eligible for the Good Neighbor Policy and reduced rates.
Explanation of Fees

Application Fee
This fee is required when a prospective student applies for admission to the college. Applications which are not accompanied by the fee will not be processed.

Board
Students may choose from three meal plans. The Gold Plan offers unlimited meals with $100 per year in debit points in the snack bar. The Base Plan offers 12 meals per week, with $150 per year in debit points at the snack bar. The 8-Meal Plan offers 8 meals per week with $220 in debit points in the snack bar.

The dining hall will be in continuous operation from breakfast through dinner.

Challenge Exam Fee
This fee is required when students take challenge exams for college credit or advanced standing.

Course Change Fee
This charge is for students who alter their schedules after the first week of classes.

Deferred Payment Fee
This fee is charged to students requesting that payment of semester charges be deferred because an outside source (employer, VA benefits, etc.) will be providing payment past the normal due date.

Degree Audit/Graduation Fee
All graduating students are charged a fee prior to graduation. The fee is not optional; all graduating students will pay the fee whether they are participating in the ceremony or not. Fee is charged per degree.

Health Insurance Fee
Health insurance is mandatory for all full-time students not otherwise covered. A student (or his/her parents) must present written proof certifying that he/she is covered by insurance to be exempted from the college insurance fee. A Student Waiver (Selection) Card for the Vermont State Colleges (VSC) Student Health Insurance Plan must be completed by all full-time students. This card will be enclosed with the semester billing. Students failing to return the card by the published deadline will automatically be enrolled and billed for the VSC Health Plan.

Late Payment Fee
This fee is charged to students that have not paid or provided proof of how their current semester bill will be paid. Financial holds will be activated approximately 30 days into each semester and this fee charged.

Late Registration Fee
This fee is an additional charge for students who do not complete their semester's class registration process by the published deadline.
Orientation Fee
This fee is to cover expenses incurred during the orientation activities including meals and room.

Portfolio Assessment Fee
This fee is for each portfolio submitted for review.

Randolph Campus Development Fee
This fee is charged per semester of all students attending classes at the Randolph campus. Full-time equivalent students (12 credits or more) are charged $75 per semester. The fee is pro-rated per credit hour for part-time students. Funds raised by the fee support the development of new facilities on the Randolph campus. In billing, the fee is referred to as "VTC Randolph Campus Fee."

Registration Fee
This fee is required of each non-degree student who enrolls in one or more courses during a semester.

 Returned Check Fee
There is a $25 service charge on checks returned to the Business Office for insufficient funds and no future checks will be cashed.

Student Activity Fee
Established by vote of the student body, this fee covers the expense of student clubs, activities, and publications. It also covers admission to most campus events, such as concerts, dramatic productions, films, lectures, as well as recreational and social activities.

Transcript Evaluation Fee
This fee covers the cost of evaluating and processing transfer credit, advanced standing, and portfolio assessment (waived for transcripts from other Vermont State Colleges institutions).

Textbooks and Supplies
The college bookstore sells textbooks, supplies and equipment, electronic calculators, and sundries. The cost of required textbooks and supplies varies depending on the program in which a student is enrolled. Typically, these costs amount to approximately $475 per semester. The bookstore accepts credit cards, cash, and checks. Bookstore charge forms are available, upon approval, from the Business Office.

Automotive Technology and Construction Practice & Management students are required to have their own tools. Contact the directors of these programs for details.
Calculators

The Vermont Tech Mathematics Department requires all entering Vermont Technical College students to possess, for use in mathematics class, a contemporary graphing calculator. For those taking Technical Mathematics and Calculus, the mathematics faculty recommends either a TI-83 or TI-83+ or an HP-48 or HP-49. If you will be taking a business math or statistics course, the TI-83 or TI-83+ is highly recommended. Although calculators may be bought at local stores, they are also available at the Vermont Tech bookstore. Any questions may be directed to John Knox at (802) 728-1204, email jknox@vtc.edu.

Other Expenses

College students will incur a variety of other expenses such as the costs of travel, social activities, and laundry. The total of these expenses is difficult to judge and can probably best be determined by each student and his/her family. The college estimates these costs, not including books, at about $1,450 a year.

Deposits

If you are an accepted candidate for admissions to the college, you are required to send a $200 tuition deposit by May 1, or within two weeks if accepted after May 1. The deposit is considered a token of a student’s good faith and is applied to the first semester’s tuition and fees. Students are not enrolled in classes or billed semester costs until the deposit is paid.

If a student intends to live on-campus, a $100 room deposit must be sent by May 1 (or within two weeks if accepted after May 1) and must accompany an applicant’s completed Room and Board Contract. For returning students, the $100 room deposit is due in early April.

Deposits are non-refundable except for a returning student’s Room Deposit if a refund is requested prior to May 1.

Payment Policy

As a condition of enrollment, students must provide payment in full, or proof of how all semester charges will be paid, on or before the first day of classes. A Financial Clearance Form will be included with other semester billing information mailed to students and must be returned to the Business Office by the published deadline. August 1 is the normal deadline for the fall semester. Subsequent semester billings begin four to six weeks before the end of the current semester in session, and students must be financially cleared before the last day of current semester classes. The college offers a tuition payment plan administered by the Sallie Mae Tuition Pay Plan. Information on this plan is included with the first semester billing.

Veterans who are certified as eligible for the GI Educational Assistance allowance will be permitted to register upon signing an approved payment plan with the Business Office.
Employer and scholarship payments requiring final grades can be deferred. Please contact the Business Office staff for details.

Financial delinquency may serve as a basis for dismissal. Financially delinquent students will be denied enrollment for the succeeding semester, issuance of grades or transcripts, or graduation. Reasonable interest and collection costs may be added to delinquent accounts.

Withdrawal from Vermont Tech and Refunds

Tuition, Fees, Room & Board

If students withdraw or are dismissed before the 60% point of the term, they will be credited Tuition, Student Activities Fee, and Room and Board on a pro-rata basis. The date of withdrawal/dismissal is understood as the day determined by the Registrar. The pro-rata calculation will use the number of calendar days completed divided by the number of total calendar days included for the full term.

Financial Aid Recipients—return of funds

If a student is receiving financial aid and is eligible for credit in accordance with the above paragraph, the credit received will first be applied to financial aid sources. Federal regulations will be used for return of Title IV funds and individual state, college, or outside scholarship policies for return of non-Title IV funds. Because financial aid funds must be used for educational expenses, when a student who is receiving financial aid for non-institutional costs withdraws from the college, a portion of this aid must be repaid. The order of distribution for the return of Title IV funds will be as follows:

1. Unsubsidized FFEL/Direct Stafford Loan;
2. Subsidized FFEL/Direct Stafford Loan;
3. Perkins Loan;
4. FFEL/Direct PLUS Loan;
5. Pell Grant;
6. FSEOG;
7. Other Title IV programs.

Board Charges

Students who withdraw or are dismissed after the 60% point of the semester will be refunded board on a per-week basis.

Other Credits

Board Charges—extended illness or authorized absence

Board charges will be credited for each full week of extended illness or authorized absence.

Room & Board Charges—suspension/dismissal from on-campus housing
There will be no credit of room charges for students suspended or dismissed from on-campus housing. Board charges will be credited for each full week of suspension/ dismissal from on-campus housing.

Definition of a Vermont Resident

The following criteria must be met by a student prior to being granted resident status for the purpose of admission, tuition, and other Vermont Tech charges.

- The applicant shall be domiciled in Vermont, said domicile having been continuous for one year immediately prior to the date of application unless the student has been in the Armed Services, Peace Corps, or other recognized national service organization, and has retained Vermont as his/her permanent address during the period of absence, and has returned to Vermont immediately following discharge from these services. Changes in residency status shall become effective for the semester following the date of reclassification.

- Domicile shall mean a person's true, fixed and permanent home, to which s/he intends to return when absent. A residence established for the purpose of attending an educational institution or qualifying for resident status for tuition purposes shall not of itself constitute domicile. Domicile shall not be dependent upon the applicant's marital status.

- The applicant must demonstrate such attachment to the community as would be typical of a permanent resident of his/her age and education.

- Receipt of significant financial support from the applicant's family will create a rebuttable presumption that the applicant's domicile is with his/her family.

- An applicant becoming a student at an institution of higher learning in Vermont within one year of first moving to the state shall have created a rebuttable presumption of residence in Vermont for the purpose of attending an educational institution.

- A student eligible for tuition purposes to enroll as a resident student in another state shall not be enrolled as a "Vermont Resident."

- A student enrolled at Vermont Technical College shall be classified by the college's Office of Admissions as a resident or non-resident for tuition purposes. The decision by the officer shall be based upon information furnished by the student and other relevant information. The officer is authorized to require such written documents, affidavits, verifications, or other evidence as he/she deems necessary.

- The burden of proof shall, in all cases, rest upon the student claiming to be a Vermont resident and shall be met upon a presentation of clear and concurring evidence.

- A student with resident status will lose that status if he/she, at any time, fails to meet the above requirements. In this event, resident tuition and other charges shall continue in effect only until the end of the academic year.

- The decision of the college's Office of Admission on the classification of a student as a resident or non-resident may be appealed in writing to the College's Dean of Administration.

Further appeal of a student's residency classification may be made in writing to the Office of the Chancellor of the Vermont State Colleges. The decision of the Office of the Chancellor shall be final.
Financial Aid

Financial aid at Vermont Technical College is based on an assumption that a student's family will first make a maximum effort to finance college expenses. Since there are many more demands on Vermont Tech's financial aid resources than the college can possibly meet, assistance from the college has to be viewed only as supplemental to this family obligation.

All federal funds at Vermont Tech are awarded on the basis of financial need. All students who apply for financial aid by the March 1 priority deadline and who are eligible for assistance will be offered financial aid, subject to the availability of these funds. The amount of any award is determined by the amount of the student's need as computed from information provided by the family on the Free Application for Federal Student Aid (FAFSA) www.fafsa.ed.gov. Recent federal regulations mandate that a needs analysis be completed for anyone who applies for federal financial aid. So, it is important to file the FAFSA as early as possible to avoid delays in processing loan applications and other forms of campus-based aid. After March 1, late applicants will be considered for aid only after all on-time applications have been processed.

In an effort to be as consistent as possible with all students in awarding aid from the college, Vermont Tech’s Office of Financial Aid requests an official signed copy of a student's and/or family's latest federal income tax return.

Applicants can expect that a fair portion of an individual's personal savings at the time of each year's application will be applied to college expenses.

Expected Family Contribution

The needs analysis system evaluates all of the information requested and determines a reasonable contribution to be expected from the parent and student towards the student's educational expenses. Unless there are extenuating circumstances, the Office of Financial Aid is required to use this expected family contribution in determining a student's need for college aid. After filing the FAFSA, if the family financial circumstances change significantly due to loss of employment, extended illness, disability, etc., inform the Office of Financial Aid in writing as soon as possible of this situation outlining the change in resources.

Income consists of wages, salary, tips, interest, dividends, pensions, welfare, social security, etc. Deductions against income are made for taxes, and an employment allowance for both parents or a single parent working outside the home, as well as an income protection allowance based upon family size and number in college.
Sources of Financial Aid

When a FAFSA is filed, you are applying for the following federal, campus-based, and state aid programs and establishing eligibility for a Federal Stafford Loan.

Federal

The Federal Pell Grant Program is an entitlement program. This means that all students who are eligible will receive Federal Pell Grant awards. Pell awards are determined by the family’s, as well as the student's financial resources. Vermont Tech requires all students desiring financial aid to apply for the Pell Grant. Provision for application to this program is made on the FAFSA.

Campus-Based

The Federal Supplemental Education Opportunity Grant (FSEOG) is a gift of money to assist students with the cost of continuing their education. It is restricted to undergraduates and does not have to be repaid. The maximum amount awarded is $4,000, depending on a student's need and the availability of funds at Vermont Tech. Students eligible for Federal Pell Grants have first consideration for Supplemental Grant funds.

The Federal Perkins Loan Program is a low-interest (5 percent) loan made directly to eligible students by the college from federal funds received for this purpose. If you qualify, you may borrow up to $15,000 during four years of college. At Vermont Tech, average loans range from $200 to $1,600 per year.

The Federal Work-Study Program (FWS) is a federal work program administered by Vermont Tech which provides jobs for students on or off campus. Average awards range from $600 to $1,400 for the year, which translates to approximately 10 hours of work per week. Students may also use FWS funds for off-campus, community service placements. Federal Work-Study earnings are never credited on a student's bill. Instead, a student worker receives a paycheck every two weeks.

State

Vermont Incentive Grants are awarded on the basis of financial need. Any full-time undergraduate Vermont resident who plans to attend or is enrolled in an approved post-high school institution, who has not already received a bachelor's degree, is eligible to apply.

"Financial Aid Packets for Vermont Students" are available at all Vermont high school guidance offices and Vermont Tech’s Office of Financial Aid. Students are required to file supplemental information to the Vermont Student Assistance Corporation (VSAC) to be considered for a Vermont State Grant.

Grants from Other States include Maine, New Hampshire, Rhode Island, and Massachusetts. These states offer undergraduate grants or scholarships usable at Vermont Tech. Vermont Tech encourages all students eligible for these grants to apply for them. Contact the Financial Aid Office or high school guidance office as to which states require supplemental information.
Federal Stafford Loans

Federal Stafford Loans—both subsidized and unsubsidized—are available to qualified students at Vermont Technical College. A subsidized loan is awarded on the basis of financial need. If you qualify for a subsidized loan, the federal government pays interest on the loan until you begin repayment and during authorized periods of deferment. The student pays the interest on the Unsubsidized Federal Stafford Loan while enrolled on at least a half-time basis.

If you're a dependent undergraduate student, you can borrow up to:

- $2,625 if you're a first-year student enrolled in a program of study that is at least a full academic year;
- $3,500 if you've completed your first year of study, and the remainder of your program is at least a full academic year;
- $5,500 a year if you've completed two years of study, are matriculated in a bachelor’s degree program, and the remainder of your program is at least a full academic year.

Independent undergraduate students may borrow an additional amount of money up to $4,000 or $5,000 a year depending on their year of study. However, through the unsubsidized loan program you can't borrow more than the cost of attendance minus any other financial aid for which you are eligible.

Both the subsidized and unsubsidized loan eligibility amounts will be offered on your award letter.

PLUS Loans enable parents with good credit histories to borrow for each child who is enrolled at least half-time and is a dependent student. Parents who wish to apply for a PLUS Loan must fill out a PLUS Loan Application, which is available through the Financial Aid Office. A PLUS loan pre-application is automatically mailed with financial aid award notification letters. The yearly limit on a PLUS Loan is the cost of attendance minus any other financial aid for which you are eligible.

Veterans' Education Benefits

Vermont Technical College is approved by the Vermont Department of Education for Veterans' Educational and Training benefits. These benefits are generally available to veterans who are separated from active duty within the past ten years; veterans with service-connected disabilities; and sons, daughters, spouses, and widows of deceased or totally disabled veterans.

Veterans' Benefits GI Bill (VA): Educational benefits are available to any honorably discharged veteran who enlisted for active duty and has been on active duty for at least 181 consecutive days. Students must make application to the Veterans Administration.

The Vermont Technical College registrar is the college’s certifying official for Veterans Administration benefits. Additional information and assistance in applying for benefits is available from the Registrar's Office.
The Vermont National Guard State Educational Assistance Program provides tuition assistance to eligible members of the Vermont National Guard enrolled in undergraduate degree and diploma programs at public colleges in Vermont.

First payment from the Veterans Administration normally takes 4-8 weeks from the beginning of the first term. After that, checks are normally received monthly.

Other

Scholarships administered by the college, including the Vermont Tech Scholars program, are available to students who meet the criteria set for each. Contact the Office of Financial Aid for information about scholarships appropriate to your situation or go to the financial aid page on the college website at www.vtc.edu. Vermont Tech also has institutional grants which are awarded based on financial need. Financial need is determined by using the same criteria that are used for awarding campus-based aid. The maximum amount awarded depends on the availability of funds, as well as student needs.

Financial Aid Award Notification Letter

In mid-March, students with completed applications will receive a financial aid award notification letter which will outline the amount and types of assistance to be received for the upcoming college year.

The award letter packet will include estimated amounts for tuition, fees, room and board, and average costs for books and supplies, personal expenses, and travel expenses. The costs for books, supplies, and personal expenses will vary from student to student and are not paid directly to the college. The family contribution and assistance from outside the college (including State Grants, Federal Pell Grants, and Veterans' Benefits) are considered resources. The difference between the financial aid budget and the contribution from resources is considered to be the student's level of need.

Financial aid awards are usually somewhat less than a student's need due to the large number of eligible applicants and the limited available funding.

Normally, self-help (work and/or loan) will be a part of every student's financial aid package, as we feel that all students should make a commitment of both current and future earnings in the financing of their education.

Statement of Satisfactory Progress for Financial Aid

The Federal Office of Education has stated that a student must be "maintaining satisfactory progress in the course of study s/he is pursuing, according to the standards and practices of the institution at which the student is in attendance."
In order to be eligible for financial aid at Vermont Technical College, a student must earn a grade point average consistent with the "Satisfactory Academic Standing" policies set forth in detail in the "Academic Affairs" chapter of this catalog (a qualitative measure) and must be making satisfactory academic progress toward completion of a degree, as defined below (a quantitative measure). Both measurements are reviewed in determining a student's eligibility for continued aid.

Satisfactory Academic Standing

Satisfactory academic standing is determined in accordance with the policies set forth under "Academic Standing" in the "Academic Affairs" chapter of this catalog. The Financial Aid Office is notified by the Registrar's Office of students who fall below the minimum standards. These students are notified that they have been placed on financial aid probation for one term.

If a student fails to raise his/her grade point average to that required for satisfactory academic standing by the end of their probationary period, financial aid eligibility will be suspended. Students who are academically dismissed automatically lose their aid eligibility.

Satisfactory Academic Progress

Satisfactory Academic Progress is determined by earning an accumulation of credits that apply to a student's current degree program, at a rate that will allow the completion of a degree program within a specified time period.

For financial aid considerations, the maximum time frame allowed for a student pursuing an associate's degree or a "plus two" baccalaureate degree is three years (six terms) of full-time enrollment (12 or more credits per term) or the equivalent part-time enrollment.

For a student enrolled in a three-year program, the maximum time frame allowed is 4.5 years (nine terms) of full-time enrollment or the equivalent part-time enrollment.

The Financial Aid Office will review for Satisfactory Academic Progress on a semester basis.

Appeal

If a student loses eligibility for aid, s/he may appeal to have the aid reinstated by writing the Director of Financial Aid. All appeals for reinstatement of financial aid should identify any mitigating circumstances causing the loss of eligibility and the measures adopted as corrective action.
Review of Awards

The Director of Financial Aid reserves the privilege of reviewing and possibly revising awards. Therefore, the applicant should notify the Office of Financial Aid immediately if there is a change in either the student's or the family's financial situation. This includes the receipt of non-college scholarships.

If a student receives an outside scholarship that the college does not know about at the time an award letter is prepared, he/she will be issued a revised award reflecting an adjustment to avoid an over-award situation. Any initial adjustment will be reflected in unmet need, and then the self-help (loan and work) portion of the financial aid package.

Most financial aid awards are based originally upon the assumption that a student will enroll as a full-time student (12 or more credits per term), unless he/she has notified us to the contrary. Thus, if a student changes his/her status from full- to part-time enrollment, an aid adjustment may result.
Career & Transfer Opportunities

Career Transfer Center

The Career Transfer Center assists students in exploring academic and career options and developing strategies to pursue those options. Individual appointments and group counseling sessions are available for students seeking career planning assistance. This office also schedules visits by firms to recruit seniors and alumni/ae for permanent positions. Companies come to the campus to interview students primarily in February, March, and April. Assistance includes counseling on presenting oneself in an interview, preparing a personal resume, and networking with employers.

Although the college can assist students in finding job opportunities, the primary responsibility for obtaining employment rests with the individual.

Students should seek summer employment in the field in which they are majoring, since this will increase their choice of jobs after graduation. Naturally, a major factor in employment is good on-the-job performance.

The Career Transfer Center maintains a library of employer, college, job hunting, and career information resources. Students may take advantage of an electronic job posting system called "Vermont Tech Connections." They can create accounts, search for jobs with employers and link with alumni for mentoring. The center also has Choices, a computer assisted career guidance system, as well as scholarship software. Students unsure about their major field of study can seek professional counseling.

Employment Opportunities

Engineering technology is one of the fastest growing fields of education. Several decades ago, industrial managers, pressed by the growing shortage of graduate engineers, recognized the need for engineering technicians to assist engineers in performing tasks and projects.

This recognition by industry and by education led to the development of two-year programs in engineering technology. The success of the graduates from these two-year, college-level programs created demand by industry, government, and small businesses for applications-oriented engineering technicians and for graduates such as veterinary technicians who possess related technical skills.

Agricultural Technology (Agribusiness Management and Dairy Farm Management) graduates take such positions as herd managers, field managers, farm managers, breeding technicians, store manager trainees, farm supply sales persons, farm owners or partners, meat inspectors, feed technologists, milk testers, or agricultural sales representatives.

Applied Technology graduates are normally employed by the sponsoring organization and are preparing for advancement within their degree field.

Architectural and Building Engineering Technology graduates become architectural drafts persons, estimators, building materials and equipment sales representatives, contractor's assistants, plant engineering aides, construction expediters, or assistants to project managers or building inspectors.
Architectural Engineering Technology graduates can find employment in all areas of the building engineering, facilities management, and construction industries. Graduates are qualified to sit for the Fundamentals of Engineering (F.E.) examination and for work in such fields as construction, facilities management, and engineering services—experience needed by those who plan to earn the Professional Engineer (P.E.) designation and pursue engineering careers.

Aeronautical Engineering Technology graduates can find employment in aeronautical and aerospace related businesses and other job fields requiring strong skills in materials technology.

Applied Technology graduates are normally employed by the sponsoring organization and are preparing for advancement within their degree field.

Automotive Technology graduates will find ample opportunity for rewarding positions and personal growth in the automotive service industry, working for automotive manufacturers, dealerships, independent repair facilities, and equipment manufacturers. The program was developed with the support and encouragement of the Vermont Automobile Dealers Association.

Business Technology & Management graduates accept positions as accounting specialists and staff accountants, office managers and executive assistants, sales and customer service managers, marketing and communication coordinators, project managers, and small business owners.

Civil & Environmental Engineering Technology graduates find employment as construction surveyors, construction managers, material testers, structural engineering drafts persons, estimators, bridge and highway design technicians, environmental design technicians, and sales persons for engineering products and equipment.

Computer Engineering Technology graduates enter the number one technological growth occupation, according to the U.S. Bureau of Labor Statistics. With an integrated hardware software background, graduates of the associate's program find positions at all levels of systems manufacturing, field service, software development, and maintenance. Bachelor's degree graduates are qualified as advanced computer hardware technicians/engineers programmers, advanced network and system administrators, and other specialized, technical positions in the broad spectrum of information technology career options.

Computer Information Technology and Software Engineering graduates are prepared for a broad range of employment opportunities including computer and information systems managers, management analysts, computer system designers, forensic computer analysts, software engineers, website designers and developers, and software publishers.

Construction Practice & Management graduates are prepared for entry-level management positions in the construction industry or for advancement in a full range of construction organizations—specialty subcontractors as well as general contractors, large corporations as well as small proprietorships.

Dental Hygiene graduates can expect a high level of professional demand from employers in the private dental practice setting. Graduates pursuing a bachelor’s degree will further expand their opportunities to work in alternative settings such as public health, education, research and dental sales.
Diesel Power Technology graduates are prepared to enter the repair, parts or management aspects of the diesel power service industry. There is increasing demand for skilled diesel service technicians within the agricultural, heavy-duty truck and earthmoving equipment service industries.

Electrical Engineering Technology graduates work in jobs with titles such as electronics technician, quality control technician, design technician, assistant to an engineer, test technician, research and development technician, technical aide, computer technician, production engineering technician, field service technician, and calibration technician.

Electromechanical Engineering Technology graduates are in unprecedented demand in manufacturing, test, and development areas of companies providing a broad range of electronics- and computer-related products. Manufacturing, equipment development and maintenance, product field service, engineering development support, and test and quality control are but a few of the areas of opportunity for graduates of this program.

General Engineering Technology graduates are normally employed by the sponsoring organization and are preparing for advancement within their degree field.

Landscape Development & Ornamental Horticulture graduates find a variety of employment opportunities as landscape designers, contractors and maintenance personnel, greenhouse growers, plant propagators, perennial growers, nursery and garden center operators, salespeople for horticultural products, and technicians for state and federal regulatory agencies.

Mechanical Engineering Technology graduates are employed as process engineering technicians, mechanical designers, computer modeling and design technicians, engineers' assistants, field service technicians, tool designers, or industrial engineering technicians.

Nursing graduates are eligible to apply to take the National Council Licensure Examination for Registered Nurses and are prepared to provide nursing care to patients in hospitals, nursing homes, and other comparable health agencies under the supervision of more experienced practitioners.

Practical Nursing graduates are eligible to apply to take the National Council Licensure Examination for Practical Nurses, and are prepared for employment in hospitals, nursing homes, and other comparable health care agencies under the supervision of a registered nurse.

Respiratory Therapy graduates are employed in hospital specialty areas such as labor and delivery, intensive care units, pulmonary function laboratories, sleep laboratories, extra corporeal membrane oxygenation, and ECG testing. Respiratory therapists also may find employment in the home-care field, rehabilitation agencies, nursing homes, and physicians’ offices.

Veterinary Technology graduates find employment with animal hospitals performing office duties, laboratory testing, and assisting veterinarians in animal care.
Transfer to Bachelor’s Degree Programs

The TRIO Career/Transfer Counselor can give assistance to students who are thinking of continuing their education in a four-year program after obtaining their associate's degree. For students interested in bachelor's programs other than those offered at Vermont Tech, the college has developed articulation agreements with a number of excellent colleges and universities to facilitate admission for Vermont Tech graduates who meet the program and grade point requirements of the receiving institution.

Associate degree graduates also may successfully transfer all or some of their Vermont Tech credits to bachelor's degree programs at Vermont Tech. For example, students who earn a Vermont Tech associate's degree in Computer Engineering Technology or Electrical Engineering Technology are well-prepared for admission as juniors to Vermont Tech’s bachelor's degree program in Computer Engineering Technology or Electromechanical Engineering Technology; two-year Mechanical Engineering Technology graduates are also prepared to enter the bachelor's program in Electromechanical Engineering Technology; and those who have completed the Architectural & Building or Civil & Environmental Engineering Technology programs may enter as juniors in Architectural Engineering Technology. Likewise, students who earn a Vermont Tech associate's degree in Business Technology & Management may continue their studies at the college and earn a bachelor's degree in the same discipline.

In addition, many other institutions offering a bachelor's degree in engineering technology accept Vermont Tech graduates with full junior standing. In the agricultural technologies, full transfer credit is available at the University of Vermont and other universities. However, students should be aware that transfer decisions are made by the receiving institution.

Students considering further education should discuss course selection and other academic questions with their academic advisors and the TRIO Career/Transfer Counselor, because certain courses may enhance their ability to transfer.
Associate's and Bachelor's Degree Programs

Aeronautical Engineering Technology

The Associate of Engineering Technology program in Aeronautical Engineering Technology is intended to advance airframe and power plant professionals for a variety of challenging careers in aeronautical, aerospace, and other careers needing strong skills in materials technology. Integral to the program is the FAA certified Airframe and Power Plant Program offered at the Burlington Airport facility of the Burlington Technical Center or holding the FAA Airframe and Power Plant Mechanics licenses. In conjunction, students complete the requirements of an associate's degree through additional studies in spacecraft technology, aerospace materials, English, communications, mathematics, humanities and social sciences and the physical sciences. The minimum number of credits required for a degree is 67.

Preliminary Course Work

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AER-1010</td>
<td>Non-destructive Testing</td>
<td>7</td>
</tr>
<tr>
<td>AER 1020</td>
<td>Avionics Past and Present</td>
<td>6</td>
</tr>
<tr>
<td>AER 1030</td>
<td>Advanced Airframes and Powerplants</td>
<td>6</td>
</tr>
<tr>
<td>ELT 2071</td>
<td>Basic Electricity</td>
<td>3</td>
</tr>
<tr>
<td>ELT 2072</td>
<td>Electronics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>26</td>
</tr>
</tbody>
</table>

First Year

First Year Fall Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT 1000</td>
<td>Freshman Seminar</td>
<td>1</td>
</tr>
<tr>
<td>AER 2021</td>
<td>Spacecraft Systems I</td>
<td>3</td>
</tr>
<tr>
<td>ENG 1061</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1420</td>
<td>Technical Mathematics</td>
<td>5</td>
</tr>
<tr>
<td>ELE XXXX</td>
<td>General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

First Year Spring Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AER 2022</td>
<td>Spacecraft Systems I I</td>
<td>3</td>
</tr>
<tr>
<td>AER 2120</td>
<td>Materials for Aerospace Apps</td>
<td>3</td>
</tr>
<tr>
<td>CIS 1080</td>
<td>Introduction to Spdsh & Db Mgmt</td>
<td>2</td>
</tr>
<tr>
<td>MAT 1520</td>
<td>Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1041</td>
<td>Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

Second Year Fall Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AER 2720</td>
<td>Satellite Project</td>
<td>1</td>
</tr>
<tr>
<td>ENG 2080</td>
<td>Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>PHY 1042</td>
<td>Physics II</td>
<td>4</td>
</tr>
<tr>
<td>ELE XXXX</td>
<td>General Education Elective</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>
Agribusiness Management Technology

Graduates of the Agribusiness Management Technology program generally pursue careers with the industries and agencies that serve production agriculture.

Some typical career choices include: sales and service representatives for feed, fertilizer and equipment industries; inspectors of milk and other agricultural products; rural credit officers; or specialists with agencies such as the Dairy Herd Improvement Association, the Soil Conservation Service, and the Peace Corps.

Students benefit from the combination of classroom instruction and practical laboratory experience, which includes use of the extensive facilities at the college farm. In addition to the important basics in plant and animal agriculture, the program emphasizes business and communication skills including computer applications. The minimum number of credits required for a degree is 67.

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 2121 - Financial Accounting</td>
<td>4</td>
<td>ACC 1010 - Computerized Accounting</td>
<td>3</td>
</tr>
<tr>
<td>AGR 1011 - Agricultural Techniques I</td>
<td>2</td>
<td>ACC 2122 - Managerial Accounting</td>
<td>4</td>
</tr>
<tr>
<td>AGR 1050 - Livestock Production</td>
<td>3</td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>LAH 1050 - Introduction to Soils</td>
<td>4</td>
</tr>
<tr>
<td>LAH 1020 - Introduction to Horticulture</td>
<td>3</td>
<td>Select one of the following electives:</td>
<td></td>
</tr>
<tr>
<td>MAT 1210 - Principles of Mathematics</td>
<td>3</td>
<td>AGR XXXX - AGR Elective</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>LAH XXXX - LAH Elective</td>
<td>2-4</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 2210 - Small Business Management</td>
<td>3</td>
<td>BUS 2230 - Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td>CHE 1020 - Introduction to Chemistry</td>
<td>4</td>
<td>BUS 2410 - Human Resources Management</td>
<td>3</td>
</tr>
<tr>
<td>CIS 1080 - Intro to Spreadsheets & Db Mgmt</td>
<td>2</td>
<td>ENG 1070 - Effective Speaking</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>Select two:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGR 2020 - Farm Buildings</td>
<td>2</td>
<td>AGR XXXX - AGR Elective</td>
<td>3-4</td>
</tr>
<tr>
<td>AGR 2040 - Forage Production</td>
<td>3</td>
<td>LAH XXXX - LAH Elective</td>
<td>3-4</td>
</tr>
<tr>
<td>BUS 2020 - Principles of Management</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUS 2260 - Principles of Financial Management</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUS 2270 - Organizational Communications</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE XXXX - Technical Elective*</td>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17-19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical Electives as approved by the department.
Applied Technology

The Applied Technology degree program is designed primarily to support the workforce education needs of a variety of companies and industries seeking technology degree opportunities for their employees.

The Applied Technology program offers an applications-oriented science and technology curricula delivered in nontraditional modes to accommodate student and industry needs. The goal is to offer students a flexible, interdisciplinary path to the acquisition of basic applied technology concepts and specific job-related skills needed to excel in their current positions and prepare for career growth. The program will concentrate on the applications of technology and emphasize the rational process involved in converting theories and ideas into practical techniques, procedures, and products. Fundamentals are related to current practice, providing a supportive "why" for the practical "how".

The technical or core coursework will focus on technology and career-oriented learning with a combination of courses based on the chosen technology. These courses must have the following characteristics:

• Will integrate theoretical (math, science-based) topics with practical skills.
• Will have laboratory or hands-on components were appropriate. These experiences will build trouble-shooting and problem-solving skills, as well as provide exposure to the course topics.
• Will have multi-course sequences of coursework where technologies dictate. In addition to introductory courses, there will be higher level coursework which lead to more advanced learning.
• Will culminate in a capstone course--typically, a projects course which requires the student to call upon the comprehensive skills/knowledge gained throughout the program.

The general education component combined with the foundation courses will help students gain a fundamental, balanced, well-rounded education and will help prepare them for life-long learning.

Because students may choose from a variety of courses to satisfy the general education, foundation, and technical emphasis requirements, course selection and a course schedule must by approved by their academic advisor. A minimum number of credits required for the Associate of Applied Science in Applied Technology degree is 64.
General Education - 20 Credits Minimum
These general education courses or their equivalents will be present in all versions of the Applied Technology degree.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT XXXX - Mathematics</td>
<td>3-5</td>
</tr>
<tr>
<td>SCI XXXX - Physical or Life Science</td>
<td>4</td>
</tr>
<tr>
<td>SSC XXXX - Social Science</td>
<td>3</td>
</tr>
<tr>
<td>HUM XXXX - Arts/Humanities</td>
<td>3</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

Foundation Courses - 20 Credits Minimum
These foundation courses will be a combination of general education and core or technical courses relevant or elective for the selected technology.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS XXXX - Computer Apps or Programming</td>
<td>6</td>
</tr>
<tr>
<td>XXX XXXX - Communications</td>
<td>8</td>
</tr>
<tr>
<td>XXX XXXX - Advanced Math or Science</td>
<td>3</td>
</tr>
<tr>
<td>XXX XXXX - Technical/Choice Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Core/Technical Courses - 24 Credits Minimum
These courses will be a combination of general education and core or technical courses relevant to the selected technology.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX XXXX - Core coursework</td>
<td>21</td>
</tr>
<tr>
<td>XXX 2720 - Capstone Project</td>
<td>3</td>
</tr>
</tbody>
</table>

24
Architectural & Building Engineering Technology

Architectural and Building Engineering Technology graduates are prepared for a wide range of construction industry-related careers at the technical and design support level. Graduates typically fill responsible positions with architects, engineers, and building contractors, and provide all levels of support to the building industry in manufacturing, sales, and governmental administration. Graduates of the program are also prepared to transfer to bachelor degree programs in architecture or engineering, including Vermont Tech’s Architectural Engineering Technology program. Graduation from the program at the associate’s level (2 or 3 yr.) allows the student the perfect opportunity to make an informed decision relative to his/her career path. Upon earning an associate's degree, students may decide to immediately enter the work force, continue their education and earn a bachelor's degree in Architectural Engineering, or pursue an additional degree in other Vermont Tech engineering programs. This “decision platform” offered to students completing the associate’s degree is one of the program’s greatest strengths.

Students receive a thorough introduction to the fundamental skills of architectural and engineering drafting, including instruction in CAD systems, along with an academic foundation in physics, mathematics, and technical writing. They are also involved with laboratory testing and field observation of construction, and design. The very comprehensive two years are rounded out with extensive exposure to architectural design, history, construction materials and methods, structural engineering, surveying, estimating, heating, ventilating, plumbing, and energy-conscious design.

A program highlight is the final senior design course. Working as teams on a hypothetical project in an actual Vermont town, students confer with proposed users of the building and others to determine their "real life" problems, aspirations, and future goals for the project. Students apply their newly-learned design principles with tasteful respect for the existing structures and test out their own planning skills, all the while conforming to code requirements, flood plain limits, and other "real world" requirements.

Many students continue on into the Bachelor of Science degree program in Architectural Engineering Technology. Some program graduates transfer to other schools of architecture or engineering to continue working toward a bachelor's degree in these fields.

The minimum number of credits required for a degree is 70. The program is accredited by the Technology Commission of the Accreditation Board for Engineering and Technology (TAC of ABET). The accrediting body may be contacted at 111 Market Place, Suite 1050, Baltimore, Maryland 21202-4012, telephone (410) 347-7700.
Two-Year Curriculum
First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 1000 - Freshmen Seminar</td>
<td>1</td>
<td>ARC 1210 - Construction Materials and Methods</td>
<td>6</td>
</tr>
<tr>
<td>ARC 1010 - Architectural Woodframe Constr.</td>
<td>3</td>
<td>ARC 1220 - Architectural History</td>
<td>3</td>
</tr>
<tr>
<td>ARC 1021 - Architectural CAD I</td>
<td>2</td>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CIS 1050 - Introduction to Spreadsheets</td>
<td>1</td>
<td>PHY 1041 - Physics I</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 1420 - Technical Mathematics</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 2031 - Environmental Systems I</td>
<td>3</td>
<td>ARC 2032 - Environmental Systems II</td>
<td>3</td>
</tr>
<tr>
<td>ARC 2040 - Construction Practices</td>
<td>3</td>
<td>ARC 2052 - Architectural Design II</td>
<td>3</td>
</tr>
<tr>
<td>ARC 2051 - Architectural Design I</td>
<td>3</td>
<td>ARC 2720 - Architecture Seminar</td>
<td>0</td>
</tr>
<tr>
<td>CET 2040 - Statics and Strength ofMaterials</td>
<td>4</td>
<td>CET 2120 - Structural Design</td>
<td>4</td>
</tr>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>PHY 1043 - Physics II for Architectural</td>
<td>3</td>
<td>ELE XXXX - Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>19</td>
</tr>
</tbody>
</table>

Three-Year Curriculum
First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 1000 - Freshmen Seminar</td>
<td>1</td>
<td>ARC 1220 - Architectural History</td>
<td>3</td>
</tr>
<tr>
<td>ARC 1010 - Architectural Woodframe Constr.</td>
<td>3</td>
<td>ENG 1042 - Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>CIS 1050 - Introduction to Spreadsheets</td>
<td>1</td>
<td>MAT 1112 - College Algebra & Trigonometry</td>
<td>5</td>
</tr>
<tr>
<td>ENG 1041 - Basic College Writing</td>
<td>4</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1111 - Intermediate Algebra</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 1021 - Architectural CAD I</td>
<td>2</td>
<td>ARC 1210 - Construction Materials & Meth</td>
<td>6</td>
</tr>
<tr>
<td>ENG 1043 - Research Writing</td>
<td>4</td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1113 - Pre-Calculus</td>
<td>5</td>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1021 - Introduction to Newtonian Mech</td>
<td>4</td>
<td>PHY 1022 - Energy Conservation and Equil</td>
<td>4</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Technical Electives as approved by the department.
<table>
<thead>
<tr>
<th>Third Year Fall Courses</th>
<th>Credits</th>
<th>Third Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 2031 - Environmental Systems I</td>
<td>3</td>
<td>ARC 2032 - Environmental Systems II</td>
<td>3</td>
</tr>
<tr>
<td>ARC 2040 - Construction Practices</td>
<td>3</td>
<td>ARC 2052 - Architectural Design II</td>
<td>3</td>
</tr>
<tr>
<td>ARC 2051 - Architecture Design I</td>
<td>3</td>
<td>ARC 2720 - Architecture Seminar</td>
<td>0</td>
</tr>
<tr>
<td>CET 2040 - Statics and Strength of Materials</td>
<td>4</td>
<td>CET 2120 - Structural Design</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1043 - Physics II for Architectural</td>
<td>3</td>
<td>ELE XXXX - Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Choose from MAT 2532 - Calculus II; MAT 2533 - Calculus III; CET 2110 - Mechanics of Soils; LAH 2011 - Introduction to Landscape Design; ARC 2022 - Architectural CAD II; or ARC 3010 - Design Systems Integration. See department advisor for other acceptable technical electives.

NOTE: Students taking MAT 1520 (or equivalent) may take PHY 2041/2042 instead of PHY 1041/1042.
Bachelor of Science in Architectural Engineering Technology

Architectural engineering technology is a broad-based field offering numerous career opportunities in the building design and construction industries. Within the scope of the discipline fall such diverse areas as structural engineering; heating, ventilating and air conditioning design; electrical and lighting design; plumbing and fire protection; design and construction management; and facilities operation, maintenance, and management.

A Bachelor of Science degree program in Architectural Engineering Technology offers educational preparation for those who will provide engineering, design, management, and contracting services to these essential components of the building design and construction industry.

Students may enroll as freshman candidates for the Bachelor of Science degree, or may choose to enroll first as associate’s degree candidates and defer a decision on bachelor’s candidacy until the second year. This provides the option of either following a career path as a technician after two years, or continuing on an engineering technology track in the four-year program. Courses that make up the final two years leading to the bachelor’s degree focus on the structural, mechanical, and electrical areas.

Graduates of Vermont Tech’s associate’s degree programs in Architectural and Building Engineering Technology or Civil and Environmental Engineering Technology may be accepted into the bachelor’s program as third-year students. Transfer students from other two-year and four-year architecture- and engineering-oriented programs are also encouraged to apply. (Students may have several introductory courses to make up that can result in additional time requirements to obtain the bachelor’s degree.)

The bachelor’s program builds on the foundation established in the associate’s program in structures, heating, ventilating, and air conditioning (HVAC), plumbing, electrical and integrated design. The scope of the curriculum is also extended to include such fields as thermodynamics, fluid mechanics, electrical circuits, lighting systems, AE management, and advanced math. Advanced computer applications include CAD and facilities management using computer-based imaging and information storage.
Graduates of the bachelor's degree program can look forward to a wide range of career opportunities as structural, mechanical, or electrical engineers engaged in building construction projects; as facilities managers; and as construction project managers, to name only a few examples.

Graduates are allowed to sit for the Fundamentals of Engineering examination in most states — although not all of them — and after meeting state requirements for appropriate work experience (currently eight years in Vermont; varies in other states) may also be examined for the Professional Engineer (P.E.) designation.

The program is accredited by the Technology Commission of the Accreditation Board for Engineering and Technology (TAC of ABET). The accrediting body may be contacted at 111 Market Place, Suite 1050, Baltimore, Maryland 21202-4012, telephone (410) 347-7700. The minimum credits required for graduation is 130.

Four Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 1000 - Freshmen Seminar</td>
<td>1</td>
</tr>
<tr>
<td>ARC 1010 - Architectural Woodframe Constr</td>
<td>3</td>
</tr>
<tr>
<td>ARC 1021 - Architectural CAD I</td>
<td>2</td>
</tr>
<tr>
<td>CIS 1050 - Introduction to Spreadsheets</td>
<td>1</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1420 - Technical Mathematics</td>
<td>5</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

First Year Spring Courses

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 2031 - Environmental Systems I</td>
<td>3</td>
</tr>
<tr>
<td>ARC 2040 - Construction Practices</td>
<td>3</td>
</tr>
<tr>
<td>ARC 2051 - Architectural Design I</td>
<td>3</td>
</tr>
<tr>
<td>CET 2040 - Statics and Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>PHY 1043 - Physics II for Architectural</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 2032 - Environmental Systems II</td>
<td>3</td>
</tr>
<tr>
<td>ARC 2052 - Architectural Design II</td>
<td>3</td>
</tr>
<tr>
<td>ARC 2720 - Architecture Seminar</td>
<td>0</td>
</tr>
<tr>
<td>CET 2120 - Structural Design</td>
<td>4</td>
</tr>
<tr>
<td>MAT 2532 - Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Third Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 2022 - Architectural CAD II</td>
<td>3</td>
</tr>
<tr>
<td>ARC 3020 - Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ARC 3110 - Codes and Loads</td>
<td>3</td>
</tr>
<tr>
<td>ELT 3020 - Electrical Circuits and Controls</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 3010 - Design Systems Integration</td>
<td>3</td>
</tr>
<tr>
<td>ARC 3030 - Steel Structures Design</td>
<td>3</td>
</tr>
<tr>
<td>ARC 3040 - Electrical/Lighting Systems</td>
<td>3</td>
</tr>
<tr>
<td>ARC 3050 - Fundamentals of Fluids & Ther</td>
<td>4</td>
</tr>
<tr>
<td>CHE 1031 - General Chemistry I</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
</tr>
</tbody>
</table>
Fourth Year

Fourth Year Fall Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 4010 - Concrete Structures Design</td>
<td>3</td>
</tr>
<tr>
<td>ARC 4020 - Architectural Engineering Mgmt</td>
<td>3</td>
</tr>
<tr>
<td>ARC 4030 - HVAC Systems</td>
<td>4</td>
</tr>
<tr>
<td>ARC 4050 - FE Exam Survey</td>
<td>1</td>
</tr>
<tr>
<td>ELE 3XXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - Technical Elective *</td>
<td>3</td>
</tr>
</tbody>
</table>

* 17 Credits

Fourth Year Spring Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 4040 - Plumbing Systems</td>
<td>3</td>
</tr>
<tr>
<td>ARC 4720 - Senior Project</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1070 - Effective Speaking</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

* 13 Credits

* Choose from CET 2020 - Hydraulics & Drainage; MAT 2533 - Calculus III; CET 2110 - Mechanics of Soils (Spring), or others with permission of department.
Automotive Technology

Automotive Technology majors receive the technical education increasingly in demand by automotive manufacturers, dealerships, independent repair facilities, and equipment manufacturers.

As modern automobiles become more complex, the people who service these vehicles must possess extensive knowledge of the sophisticated mechanical, electrical, and computer systems currently used. The function of individual vehicle systems and their interrelation with other systems must be fully understood.

The automotive technology program helps students to acquire the knowledge and skills needed to fulfill this professional function. The curriculum covers both theory and practical applications of a range of subjects selected to give a broad exposure to mechanical and electronic automobile devices. Understanding electrical and electronic concepts is stressed. Classroom instruction is reinforced with practical laboratory experience. Electronic control of mechanical systems, system design considerations, and the analysis and diagnosis of system failures are stressed, as well as the traditional "hands-on" skills. Students must have in their possession a set of required tools for personal use in the laboratory and during the summer cooperative work experience.

Also required are courses in English, computer software and programming, technical mathematics, physics, technical communication, and general education. This ensures the graduate a well-rounded technical education and allows flexibility in choosing career paths. The program also includes a ten-week summer cooperative education requirement which provides students with real-world experience and the chance to explore future employment possibilities.

Graduates of the program can anticipate ample opportunity for rewarding positions and personal growth in the automotive service industry. The program has been developed with the support and encouragement of the Vermont Automobile Dealers Association. The minimum number of credits required for a degree is 66.

NOTE: Students who do not place in ENG 1060 or 1061 may need to take an overload or summer courses to complete the program in two years.
Two Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th></th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATT 1000 - Automotive Seminar</td>
<td>1</td>
<td></td>
<td>ATT 1030 - Manual Drivetrains</td>
<td>3</td>
</tr>
<tr>
<td>ATT 1010 - Automotive Susp & Brakes</td>
<td>4</td>
<td></td>
<td>ATT 1040 - Automotive Electrical Systems</td>
<td>4</td>
</tr>
<tr>
<td>ATT 1020 - Engine Diagnostics & Repair</td>
<td>4</td>
<td></td>
<td>CIS 1050 - Introduction to Spreadsheets</td>
<td>1</td>
</tr>
<tr>
<td>ATT 1120 - General Electronics</td>
<td>4</td>
<td></td>
<td>PHY 1030 - General Physics</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td></td>
<td>ELE XXXX - General Education Elective*</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1100 - Intro to Technical Math</td>
<td>3</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td></td>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

First Year Summer Course

| ATT 2810 - Summer Internship | 1 |

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th></th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATT 2010 - Engine Performance</td>
<td>4</td>
<td></td>
<td>ATT 2030 - Advanced Engine Performance</td>
<td>4</td>
</tr>
<tr>
<td>ATT 2020 - Body & Electronic Systems</td>
<td>4</td>
<td></td>
<td>ATT 2040 - Automatic Transmissions & Axles</td>
<td>4</td>
</tr>
<tr>
<td>ELT 2110 - Digital Systems</td>
<td>4</td>
<td></td>
<td>BUS 2210 - Small Business Management</td>
<td>3</td>
</tr>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
<td></td>
<td>MEC 1020 Manufacturing Processes</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

| ELE XXXX - General Education Elective* | 3 |

* PSY 1010 - Intro to Psychology, strongly recommended for SS elective.
Business Technology & Management

Careers in business continue to represent one of the fastest-growing employment areas in the United States. Business Technology and Management graduates enjoy a wide range of career options found in business, industry, government, and public institutions. Graduates are employed in positions such as office managers, staff accountants, accounting specialists, marketing and communication coordinators, sales and customer service managers, project managers, and small business owners.

As an alternative to immediate employment, Business Technology and Management graduates may choose to continue their education by enrolling in the Bachelor of Science degree in Business Technology and Management at Vermont Technical College, or they may transfer to a bachelor program such as Accounting or Marketing.

A unique program feature is the opportunity for students to develop a broad base of knowledge for a wide range of business careers, rather than acquiring theory and skills specific to only one career area. Core objectives for all Business Technology and Management students include four components:

1. technical skills in accounting, computer applications, and office support;
2. communication skills in writing, speaking, and listening;
3. management skills in human resources, marketing, and business law; and
4. interpersonal “soft” skills in image awareness, business behavior, teamwork, and job search techniques.

Highlights of the Business Technology and Management associate's degree include a formal business dinner where students dress in professional attire and learn (and practice) the rules of formal dining. Students learn parliamentary procedure and meeting management and participate in a team role play to demonstrate these skills. Students also learn resume writing and job interview skills and attend a “mocktail” reception and interview. Freshmen complete a ten-hour service learning project. Seniors complete a capstone project, which includes a team oral presentation judged by professionals from business and industry.

The minimum number of credits required for a degree is 69.
Two Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 2121 - Financial Accounting</td>
<td>4</td>
<td>ACC 1010 - Computerized Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BUS 1010 - Introduction to Business</td>
<td>3</td>
<td>BUS 1052 - Information Processing II</td>
<td>3</td>
</tr>
<tr>
<td>BUS 1050 - Professional Development</td>
<td>1</td>
<td>CIS 1080 - Introduction to Spreadsht & Db Mgmt</td>
<td>2</td>
</tr>
<tr>
<td>BUS 1051 - Information Processing I</td>
<td>3</td>
<td>ENG 1070 - Effective Speaking</td>
<td>3</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1210 - Principles of Mathematics</td>
<td>3</td>
<td>Select One of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>ACC 2122 - Managerial Accounting</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BUS 2150 - Office Information Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17-18</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 2020 - Principles of Management</td>
<td>3</td>
<td>BUS 2132 - Office Administration II</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2131 - Office Administration I</td>
<td>3</td>
<td>BUS 2230 - Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2270 - Organizational Communications</td>
<td>3</td>
<td>BUS 2410 - Human Resources Management</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td>BUS 2720 - Business Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Select Two:</td>
<td></td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2210 - Small Business Management</td>
<td>3</td>
<td>Select One:</td>
<td></td>
</tr>
<tr>
<td>BUS 2260 - Principles of Financial Management</td>
<td>3</td>
<td>BUS 2210 - Small Business Management</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2440 - Introduction to Business Law</td>
<td>3</td>
<td>CIS 1152 - Advanced Website Development</td>
<td>4</td>
</tr>
<tr>
<td>CIS 1151 - Website Design</td>
<td>3</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td>ELE XXXX - Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - Technical Elective</td>
<td>3</td>
<td>SCI XXXX - Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>SCI XXXX - Science Elective</td>
<td>4</td>
<td>17-18</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Students who do not place in ENG 1060 or 1061 may need to take an overload or a summer course to graduate on time.
Bachelor of Science in Business Technology & Management

Nearly every company relies on technology to fulfill its mission – from high-tech manufacturing, where technology is the heart of the business, to service industries that depend on technical systems to manage core business functions.

The Bachelor of Science degree program in Business Technology and Management provides students with the opportunity to acquire a sought-after educational background: high tech applied skills combined with management and leadership skills directly related to the use of technology in business and industry. The course content and sequence link with functional management areas through case studies and real-world situations that occur on a daily basis. The focus throughout is how technical skills, interpersonal skills, and technology help to build a competitive strength in business.

Applicants may enter the program through one of the following delivery options:

- Students may enroll in a four-year format with application directly to the bachelor program.
- Students may first enroll in an associate’s degree program and defer, a decision on bachelor candidacy. These students may apply for the bachelor’s degree upon completion of their associate’s degree. Students who complete any Vermont Tech associate’s degree programs are eligible to apply to the bachelor program.
- Students, who have already earned an associate’s degree from Vermont Tech or other institutions, are eligible to apply to the bachelor’s program.

The bachelor’s degree in Business Technology and Management enhances the career options of students in a variety of ways.

- Positions graduates to assume leadership roles in an increasingly technology-focused workforce;
- Boosts starting salary and increases potential for promotion;
- Increases employees’ contributions to their current employer;
- Provides the opportunity for students to grow personally and professionally in the breadth and depth of their technical and business knowledge.

Students must complete all of the required courses in the list that follows. If students have taken any of the required courses at the associate level, that does not reduce their total credit requirement for the bachelor degree.

A total of 120 credits minimum are required for the Bachelor of Science in Business Technology and Management.
Core Courses

<table>
<thead>
<tr>
<th>Core Courses*</th>
<th>Credits</th>
<th>Electives**</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 2121 - Financial Accounting</td>
<td>4</td>
<td>ACC 1010 - Computerized Accounting</td>
<td>4</td>
</tr>
<tr>
<td>BUS 2020 - Principles of Management</td>
<td>3</td>
<td>ACC 2122 - Managerial Accounting</td>
<td>4</td>
</tr>
<tr>
<td>BUS 2230 - Principles of Marketing</td>
<td>3</td>
<td>ACC 2201 - Intermediate Accounting I</td>
<td>4</td>
</tr>
<tr>
<td>BUS 2410 - Human Resources Management</td>
<td>3</td>
<td>ACC 2202 - Intermediate Accounting II</td>
<td>4</td>
</tr>
<tr>
<td>BUS 2440 - Introduction to Business Law</td>
<td>3</td>
<td>ACC 2210 - Cost Accounting</td>
<td>4</td>
</tr>
<tr>
<td>BUS 3150 - Production & Operations Mgmt.</td>
<td>3</td>
<td>BUS 1010 - Intro to Business</td>
<td>3</td>
</tr>
<tr>
<td>BUS 3230 - Financial Management</td>
<td>3</td>
<td>BUS 1050 - Professional Development</td>
<td>1</td>
</tr>
<tr>
<td>BUS 3250 - Organizational Behavior Info Tech</td>
<td>3</td>
<td>BUS 1051 - Information Process I</td>
<td>3</td>
</tr>
<tr>
<td>BUS 3410 - Business Ethics</td>
<td>3</td>
<td>BUS 1052 - Information Process II</td>
<td>3</td>
</tr>
<tr>
<td>BUS 4310 - Business Information Architecture</td>
<td>3</td>
<td>BUS 2131 - Office Administration I</td>
<td>3</td>
</tr>
<tr>
<td>BUS 4530 - Technical Project Management</td>
<td>3</td>
<td>BUS 2132 - Office Administration II</td>
<td>3</td>
</tr>
<tr>
<td>BUS 4730 - Senior Project</td>
<td>3</td>
<td>BUS 2150 - Office Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENG 1061 - English Comp</td>
<td>3</td>
<td>BUS 2210 - Small Business Management</td>
<td>3</td>
</tr>
<tr>
<td>ENG 2080 - Tech Comm</td>
<td>3</td>
<td>BUS 2260 - Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - Art/Humanities Electives</td>
<td>3</td>
<td>BUS 2270 - Organizational Communications</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - Social Science Elective</td>
<td>3</td>
<td>BUS 3260 - Investments/Portfolio Mgmt.</td>
<td>3</td>
</tr>
<tr>
<td>ELE 3XXX - Arts & Humanities Elective</td>
<td>3</td>
<td>BUS 2411 - E-Commerce I</td>
<td>3</td>
</tr>
<tr>
<td>ELE 3XXX - Social Science Elective</td>
<td>3</td>
<td>BUS 2412 - E-Commerce II</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1221 - Finite Mathematics</td>
<td>3</td>
<td>BUS 2720 - Business Seminar</td>
<td>3</td>
</tr>
<tr>
<td>MAT 2021 - Statistics</td>
<td>3</td>
<td>BUS 4220 - Network/Date Comm</td>
<td>3</td>
</tr>
<tr>
<td>SCI XXXX - Lab Science</td>
<td>4</td>
<td>BUS 4510 - Business Mgmt Thru Tech</td>
<td>3</td>
</tr>
<tr>
<td>Select One:</td>
<td></td>
<td>BUS 4560 - Principles of Leadership</td>
<td>3</td>
</tr>
<tr>
<td>ECO 2020 - Macroeconomics</td>
<td>3</td>
<td>CIS 1151 - Website Design</td>
<td>3</td>
</tr>
<tr>
<td>ECO 2030 - Microeconomics</td>
<td>2</td>
<td>CIS 1152 - Advanced Website Development</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>CIS 2250 - Client/Server Databases</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS 2271 - Introduction to Java Programming</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG 1070 - Effective Speaking</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INT 1000 - Freshman Orientation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAT 1420 - Technical Mathematics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAT 2022 - Statistics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAT 2532 - Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XXX XXXX - Business or Technical Elective</td>
<td>3-4</td>
</tr>
</tbody>
</table>

52 Credits Minimum

*All of the core courses or equivalent must be completed.

**All of the electives listed are not regularly offered and other electives may be approved for substitution. Electives plus core courses must equal 120 credits minimum.

Note: Minimum requirements for general education electives for the Bachelor of Science degree include the recommended requirements within the general education electives description described further in this catalog - in addition to the two 3000 level Art/Humanities or Social Science electives.
Civil & Environmental Engineering Technology

No discipline offers a greater diversity of career opportunities than does civil engineering. Civil engineers and technicians work on every phase of design and construction of buildings, roadways, bridges, public water systems, dams, landfills, and recreation facilities.

Graduates of the program have the opportunity to work outdoors on construction and surveying projects, or indoors in design or estimating offices. Students are also well prepared to continue in Vermont Tech’s Bachelor of Science program in Architectural Engineering Technology.

The program provides training in civil engineering design, surveying, materials testing, the construction process, structural design of buildings, water and wastewater engineering, and solid waste management.

Students learn to prepare construction drawings using computer-aided drafting and design (CAD) equipment at state-of-the-art computer workstations.

Graduates find work with engineering design firms, government agencies, construction firms, and testing laboratories. Some graduates go on to become licensed land surveyors or registered professional engineers.

The program is accredited by the Technology Commission of the Accreditation Board for Engineering and Technology (TAC of ABET). The accrediting body may be contacted at 111 Market Place, Suite 1050, Baltimore, Maryland 21202-4012, telephone (410) 347-7700.

The minimum number of credits required for a degree is 70.

Two Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CET 1000 - Civil Seminar</td>
<td>1</td>
<td>CET 1020 - Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>CET 1011 - Surveying I</td>
<td>3</td>
<td>CET 1032 - Computer Applications II</td>
<td>3</td>
</tr>
<tr>
<td>CET 1031 - Computer Applications I</td>
<td>3</td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>CHE 1031 - General Chemistry I</td>
<td>4</td>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>PHY 1041 - Physics I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1420 - Technical Mathematics</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CET 2012 - Surveying II</td>
<td>4</td>
<td>CET 2050 - Civil and Environmental Design</td>
<td>4</td>
</tr>
<tr>
<td>CET 2020 - Hydraulics and Drainage</td>
<td>3</td>
<td>CET 2060 - Construction Estimates & Records</td>
<td>3</td>
</tr>
<tr>
<td>CET 2030 - Environmental Eng & Science</td>
<td>3</td>
<td>CET 2110 - Mechanics of Soils</td>
<td>3</td>
</tr>
<tr>
<td>CET 2040 - Statics and Strength of Materials</td>
<td>4</td>
<td>CET 2120 - Structural Design</td>
<td>4</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>
Three Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CET 1000 - Civil Seminar</td>
<td>1</td>
<td>CET 1020 - Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>CET 1011 - Surveying I</td>
<td>3</td>
<td>ENG 1042 - Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>CIS 1050 - Introduction to Spreadsheets</td>
<td>1</td>
<td>MAT 1112 - College Algebra & Trigonometry</td>
<td>5</td>
</tr>
<tr>
<td>ENG 1041 - Basic College Writing</td>
<td>4</td>
<td>PHY 1021 - Introduction to Newtonian Mech</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1111 - Intermediate Algebra</td>
<td>5</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CET 1031 - Eng & Surveying Computer Appls. I</td>
<td>3</td>
<td>CET 1032 - Computer Applications II</td>
<td>3</td>
</tr>
<tr>
<td>ENG 1043 - Research Writing</td>
<td>4</td>
<td>CHE 1031 - General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1113 - Pre-Calculus</td>
<td>5</td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>PHY 1022 - Energy Conservation and Equil</td>
<td>4</td>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Third Year Fall Courses</th>
<th>Credits</th>
<th>Third Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CET 2012 - Surveying II</td>
<td>4</td>
<td>CET 2050 - Civil and Environmental Design</td>
<td>4</td>
</tr>
<tr>
<td>CET 2020 - Hydraulics and Drainage</td>
<td>3</td>
<td>CET 2060 - Construction Estimates & Records</td>
<td>3</td>
</tr>
<tr>
<td>CET 2030 - Environmental Eng & Science</td>
<td>3</td>
<td>CET 2110 - Mechanics of Soils</td>
<td>3</td>
</tr>
<tr>
<td>CET 2040 - Statics and Strength of Materials</td>
<td>4</td>
<td>CET 2120 - Structural Design</td>
<td>4</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

NOTE: Students who do not place in ENG 1060 or 1061 may need to take an overload or a summer course to graduate on time. Students taking MAT 1520 (or equivalent) may take PHY 2041/2042 instead of PHY 1041/1042.
Computer Engineering Technology

Computer technology is one of the fastest-growing career fields in the United States, according to U.S. Labor Department statistics—a good indication of a strong job market for graduates of this program. Some career opportunities include sales, service, programming, and manufacturing of computer-based systems.

Computer Engineering Technology students develop an understanding and working knowledge of both computer hardware and software. With a command of the total environment, a computer technician is able to relate to both programmers and hardware engineers.

The theory developed in the classroom is reinforced with laboratory work, which allows students to develop confidence and skill in their newly-acquired knowledge and to accurately report the results of their observations. Along with two networked computer labs, students use the facilities available in three additional instrumented electronics labs.

Computer Engineering Technology students share many common first-semester courses with the Electrical Engineering Technology students. This semester provides students with a firm base in fundamental principles. Subsequent semesters’ offerings stress a systems approach, with students investigating computer-based applications from both a hardware and a software perspective. Interfacing computers with their peripherals and network applications are emphasized. Graduates are well prepared for admission to Vermont Tech’s Bachelor of Science program in Computer Engineering Technology.

With an extra year’s work, students may pursue a dual associate's degree with Electrical Engineering Technology. Contact the Office of Admissions for details on these opportunities.

The program is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Suite 1050, Baltimore, Maryland 21202-4012, telephone (410) 347-7700.

The minimum number of credits required for a degree is 69.

A graduate of Vermont Tech’s Computer Engineering Technology associate’s degree program should be able to:

- Analyze, debug, and modify small- to medium-sized programs written in C or C++.
- Understand the basic concepts of object-oriented programming and other current programming techniques.
- Analyze, debug, and modify small programs written in the assembly language of a commercially important processor, as well as understand the software aspects of basic hardware control (port access, interrupt service routines, timing issues).
- Analyze, design, implement, and troubleshoot both combinational and sequential digital circuits using basic tools and techniques such as truth tables, Karnaugh maps, state diagrams, state tables, logic probe, and digital storage oscilloscope.
• Interface simple analog or digital hardware to a computer or micro-controller and program the interface in both assembly language and a high-level language.
• Install a commercially important operating system and be able to manage the system’s resources, as well as interpret the output of monitoring tools and make recommendations on how to improve system performance.
• Apply his or her working knowledge of network protocols from the physical layer through the transport layer to analyze and troubleshoot TCP/IP network problems.
• Clearly communicate technical information in both oral and written form to peers and supervisors.
• Understand the Computer Engineering Technology profession and its related ethical and social issues.
• Function effectively on teams.
• Demonstrate a commitment to quality, timeliness, and continuous improvement.

Two Year Curriculum
First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 2025 - 'C' Programming</td>
<td>4</td>
<td>CIS 2280 - Perl Programming</td>
<td>2</td>
</tr>
<tr>
<td>ELT 1000 - Electrical and Computer Orientation</td>
<td>1</td>
<td>ELT 1080 - Electronics for CPE</td>
<td>4</td>
</tr>
<tr>
<td>ELT 1031 - Electrical Circuits I</td>
<td>4</td>
<td>ELT 1110 - Introduction to Digital Circuits</td>
<td>4</td>
</tr>
<tr>
<td>ELT 1051 - Presentation Graphics I</td>
<td>1</td>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>PHY 1041 - Physics I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1420 - Technical Mathematics</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 2151 - Computer Networks I</td>
<td>4</td>
<td>CIS 2230 - System Administration</td>
<td>4</td>
</tr>
<tr>
<td>CIS 2260 - Object-Oriented Programming</td>
<td>3</td>
<td>CIS 2720 - Computer Engineering Projects</td>
<td>3</td>
</tr>
<tr>
<td>ELT 2020 - Microprocessor Techniques</td>
<td>4</td>
<td>ELT 2040 - Computer System & Interface</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1042 - Physics II</td>
<td>4</td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Students who do not place in ENG 1060 or 1061 may need to take an overload or a summer course to complete the program on time. Students taking MAT 1520 (or equivalent) may take PHY 2041/2042 instead of PHY 1041/1042.
Three Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 1000 - Electrical and Computer Orientation</td>
<td>1</td>
<td>CIS 1160 - Fundamentals of Programming in C</td>
<td>1</td>
</tr>
<tr>
<td>ELT 1011 - Fundamentals of Circuits I</td>
<td>3</td>
<td>ELT 1012 - Fundamentals of Circuits II</td>
<td>3</td>
</tr>
<tr>
<td>ENG 1041 - Basic College Writing</td>
<td>4</td>
<td>ENG 1042 - Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1111 - Intermediate Algebra</td>
<td>5</td>
<td>MAT 1112 - College Algebra & Trigonometry</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 2025 - "C" Programming</td>
<td>4</td>
<td>CIS 2280 - Perl Programming</td>
<td>2</td>
</tr>
<tr>
<td>ELT 1051 - Presentation Graphics I</td>
<td>1</td>
<td>ELT 1080 - Electronics for CPE</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1043 - Research Writing*</td>
<td>4</td>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1113 - Pre-Calculus</td>
<td>5</td>
<td>PHY 1022 - Energy Conservation and Equil</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1021 - Intro to Newtonian Mechanics</td>
<td>4</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Third Year Fall Courses</th>
<th>Credits</th>
<th>Third Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 2151 - Computer Networks I</td>
<td>4</td>
<td>CIS 2230 - System Administration</td>
<td>4</td>
</tr>
<tr>
<td>CIS 2260 - Object-Oriented Programming</td>
<td>3</td>
<td>CIS 2720 - Computer Engineering Projects</td>
<td>3</td>
</tr>
<tr>
<td>ELT 2020 - Microprocessor Techniques for CPE</td>
<td>4</td>
<td>ELT 2040 - Computer System & Interfaces</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1042 - Physics II</td>
<td>4</td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Students who have satisfied ENG-1043 may take a General Education elective.
Bachelor of Science in Computer Engineering Technology

The Bachelor of Science program in Computer Engineering Technology is a program that builds on the Vermont Tech associate's degree in Computer Engineering Technology or any accredited two-year associate's degree in Computer Engineering Technology.

This program offers a balanced treatment of hardware, software, and administrative (or “systems”) topics. As with the two-year degree at Vermont Tech, this program explores what goes on “under the hood” of a computer system. Digital electronics and computer architecture are explored, as well as topics in programming, networks, and system administration. This broad-based approach is intended to give graduates a diverse range of career options.

Computer technology is a rapidly evolving field. Today’s topics may be of no interest in 10 years. Vermont Tech’s approach is to give students a good foundation in all aspects of computer technology so that they can adapt to changes in the field. Also, because hardware, software, and systems topics often overlap in the real world, Vermont Tech’s preparation will equip graduates to properly evaluate the entire computer system they are working with and understand how all of its aspects interact.

Qualified students from Vermont Tech’s Computer Engineering Technology three-year option and the AE.CPE program may continue in the BS.CPE program after completion of their associate’s degrees. Recent graduates of other accredited two-year computer engineering technology programs should be able to enter the junior year with little or no additional coursework.

However, students coming from a related two-year degree (for example electrical engineering technology) or who have been out of school for awhile, might need to take some extra classes before being fully prepared for the junior year of this program. Each incoming student will be evaluated on a case-by-case basis. Prospective students are encouraged to contact the admissions office with any questions regarding admission into the junior year.
A graduate of Vermont Tech’s Bachelor of Science in Computer Engineering Technology program should be able to:

- Analyze, design, implement, and troubleshoot digital systems, and use a hardware description language to aid in describing, verifying, and synthesizing digital systems.
- Analyze, design, implement, and troubleshoot embedded microprocessor and microcontroller systems in both the hardware and software areas, as well as analyze, design, implement, and troubleshoot the interfacing circuitry to these systems.
- Evaluate new computer hardware technologies (architectures, system structure, etc) and make recommendations about such technologies based on features, performance, and cost.
- Analyze, design, implement, and troubleshoot simple digital signal processing systems, as well as understand the mathematical basis for the operation of these systems.
- Analyze, design, develop, and debug medium sized object-oriented applications written in C, C++, and/or JAVA, and have a reasonable understanding of how network applications (both client/server and distributed), multithreaded applications and graphical applications are constructed.
- Learn new programming languages easily and choose the appropriate language for a particular problem, as well as understand the concepts of programming well enough to apply those concepts in any language and even design and implement a small, specialized language, if necessary.
- Use standard software engineering tools such as debuggers, project build utilities (make), version control systems, and software design tools.
- Analyze network protocols as well as design and troubleshoot systems that interact using those protocols.
- Understand and evaluate system performance and security and use standard tools (such as network management tools, protocol analyzers, and system auditing packages) to evaluate a system, recommend actions for correcting performance problems and security issues, and implement those recommendations.
- Build system software that interacts directly with system hardware and write a device driver or other operating system module, as well as understand operating system design well enough to evaluate new systems.
- Make recommendations pertaining to the technical aspects of system policy and implement those recommendations.
- Locate, read, and understand relevant standards documents. Communicate clearly and interact appropriately with peers and with people in a management position.
- Demonstrate a commitment to quality, timeliness, and continuous improvement.

The minimum number of credits required for the degree is 130.
Four Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 2025 - "C" Programming</td>
<td>4</td>
<td>CIS 2280 - Perl Programming</td>
<td>2</td>
</tr>
<tr>
<td>ELT 1000 - Electrical and Computer Orientation</td>
<td>1</td>
<td>ELT 1080 - Electronics for CPE</td>
<td>4</td>
</tr>
<tr>
<td>ELT 1031 - Electrical Circuits I</td>
<td>4</td>
<td>ELT 1110 - Introduction to Digital Circuits</td>
<td>4</td>
</tr>
<tr>
<td>ELT 1051 - Presentation Graphics I</td>
<td>1</td>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>PHY 1041 - Physics I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1420 - Technical Mathematics</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 2151 - Computer Networks I</td>
<td>4</td>
<td>CIS 2230 - System Administration</td>
<td>4</td>
</tr>
<tr>
<td>CIS 2260 - Object-Oriented Programming</td>
<td>3</td>
<td>CIS 2720 - Computer Engineering Projects</td>
<td>3</td>
</tr>
<tr>
<td>ELT 2020 - Microprocessor Techniques for CPE</td>
<td>4</td>
<td>ELT 2040 - Computer System & Interfaces</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1042 - Physics II</td>
<td>4</td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Third Year Fall Courses</th>
<th>Credits</th>
<th>Third Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 3030 - Programming Languages</td>
<td>3</td>
<td>BUS 2440 - Introduction to Business Law</td>
<td>3</td>
</tr>
<tr>
<td>CIS 3050 - Algorithms and Data Structures</td>
<td>3</td>
<td>CIS 3010 - Database Systems</td>
<td>4</td>
</tr>
<tr>
<td>ELT 3010 - Digital II</td>
<td>4</td>
<td>CIS 3152 - Networks II</td>
<td>4</td>
</tr>
<tr>
<td>MAT 2532 - Calculus II</td>
<td>4</td>
<td>ELT 3050 - Microprocessor Techniques II</td>
<td>4</td>
</tr>
<tr>
<td>ELE 3XXX – General Education Elective</td>
<td>3</td>
<td>MAT 3170 - Applied Mathematics for Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fourth Year Fall Courses</th>
<th>Credits</th>
<th>Fourth Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 4020 - Advanced Operating Systems</td>
<td>4</td>
<td>CIS 4040 - Computer Security</td>
<td>3</td>
</tr>
<tr>
<td>CIS 4030 - GUI Programming</td>
<td>3</td>
<td>CIS 4050 - Compiler Design</td>
<td>3</td>
</tr>
<tr>
<td>CIS 4150 - Software Engineering</td>
<td>3</td>
<td>CIS 4712 - Project II</td>
<td>3</td>
</tr>
<tr>
<td>CIS 4711 - Project I</td>
<td>2</td>
<td>ELT 4020 - Digital Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td>ELT 4010 - Computer Architecture</td>
<td>3</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>MAT 3720 - Topics in Discrete Mathematics</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Minimum of 24 credits in Art & Humanities and Social Sciences is required. Students taking MAT 1520 (or equivalent) may take PHY 2041/2042 instead of PHY 1041/1042.
Computer Information Science and Technology

Program descriptions for degrees in Computer Information Technology and Computer Software Engineering.

The Computer Information Science and Technology (IST) programs are designed to be flexible in course delivery mechanisms and required curriculum. Program advisors will work closely with each student to ensure that the student’s chosen curriculum best fits both that student’s interests and professional goals. There are both associate’s and bachelor’s degrees available and the programs may be completed as 2-year associate programs, 4-year bachelor programs or as 2 + 2 programs (associate’s degree followed by a bachelor’s degree).

The common core of courses in the Computer Information Science and Technology program cluster – made up of the Computer Information Technology and Computer Software Engineering degrees – places the value of liberal and non-technical professional issues at the fore. Career study, as embodied in the major and specializations, is further divided into enduring concepts in the major and other fluid technologies, in each specialization area.

The Computer Software Engineering bachelor’s degree has specializations in Algorithms, Analysis and Design, and Web Development. The Computer Information Technology bachelor’s degree had specializations of Computer Networking and Office Automation. Students may choose their own focus and select technical electives to enhance their chosen specialization.

Core studies create a strong background for continuing studies with either a business-focused Computer Information Technology degree or a technically focused Computer Software Engineering degree. Core course subject areas include - historical developments, logic, systems thinking, change-related stresses, emerging technologies, societal issues, professionalism and ethics, fundamental programming, HTML and Web Scripting.

Courses from other Vermont State Colleges may be taken to meet degree requirements wherever equivalent course work is available. The program is offered for fulltime students on the main campus in Randolph Center, but students may complete portions of the degree as full or part-time students at other locations or other VSC schools. Since Vermont Tech is the degree-granting institution, at least half of the credits for the degree must be granted by Vermont Technical College.

This program is sponsored in part by a National Science Foundation Advanced Technology Education grant. It is designed to fill both educational and workforce gaps in software engineering and information technology within the state of Vermont.

Since both the Computer Software Engineering and Computer Information Technology degree programs have the same initial curriculum, students may change programs after the first term or year with no loss of time or credits.

Given the dynamic nature of the technology field, courses and requirements in the IST program are subject to reasonable change. The minimum number of credits to complete a bachelor’s degree is 120.

The minimum number of credits to complete an associate’s degree is 65.
Vermont Technical College
Computer Information Technology
Associate’s Degree
Two Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 1151 - Website Design</td>
<td>3</td>
<td>CIS 1030 - Intro to Sprdshts & Db Mgmt</td>
<td>2</td>
</tr>
<tr>
<td>CIS 2271 - JAVA Programming</td>
<td>4</td>
<td>CIS 1152 - Adv. Website Design</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>CIS 1420 - Computational Foundations</td>
<td>4</td>
</tr>
<tr>
<td>HIS 1260 - IT, Past, Present & Future</td>
<td>3</td>
<td>PHI 1030 - Intro to Logic</td>
<td>3</td>
</tr>
<tr>
<td>INT 1000 - Freshman Orientation</td>
<td>1</td>
<td>Select One:</td>
<td></td>
</tr>
<tr>
<td>Select One:</td>
<td></td>
<td>CIS 2025 - "C" Programming</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1221 - Finite Math*</td>
<td>3</td>
<td>MAT 1420 - Technical Mathematics**</td>
<td>5</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective Credits</td>
<td>3</td>
<td>MAT 2021 - Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>16-18</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 2020 - Principles of Management</td>
<td>3</td>
<td>BUS 2150 - Office Info Systems</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2411 - E-Commerce I</td>
<td>3</td>
<td>BUS 2412 - E-Commerce II</td>
<td>4</td>
</tr>
<tr>
<td>ENG 2080 - Tech Comm</td>
<td>3</td>
<td>CIS 2151 - Computer Networks I</td>
<td>4</td>
</tr>
<tr>
<td>SCI XXXX - Science Elective</td>
<td>4</td>
<td>ELE XXXX - Gen Ed Elective</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - Gen Ed Elective</td>
<td>3</td>
<td>ELE XXXX - Tech Elective</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>17-18</td>
</tr>
</tbody>
</table>

*MAT 1221 is a pre-requisite to MAT 2021.

**MAT 1420 is a pre-requisite to MAT 2021.
B.S. of Computer Information Technology

Four Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 1151 - Website Design</td>
<td>3</td>
<td>CIS 1080 - Intro. to Sprdshts & Db Mgmt.</td>
<td>2</td>
</tr>
<tr>
<td>CIS 2271 JAVA Programming</td>
<td>4</td>
<td>CIS 1152 - Advanced Website Dev</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>CIS 1420 - Computational Foundations</td>
<td>4</td>
</tr>
<tr>
<td>HIS 1260 - Info. Tech., Past, Present and Future</td>
<td>3</td>
<td>PHI 1030 - Introduction to Logic</td>
<td>3</td>
</tr>
<tr>
<td>INT 1000 - Freshman Orientation</td>
<td>1</td>
<td>Select One:</td>
<td></td>
</tr>
<tr>
<td>MAT 1221 - Finite Math*</td>
<td>3</td>
<td>MAT 1420 - Technical Mathematics**</td>
<td>5</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td>MAT 2021 - Statistics**</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>16-18</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 2020 - Principles of Management</td>
<td>3</td>
<td>BUS 2150 - Office Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2411 - E-Commerce I</td>
<td>3</td>
<td>BUS 2412 - E-Commerce II</td>
<td>4</td>
</tr>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
<td>CIS 2151 - Computer Networks I</td>
<td>4</td>
</tr>
<tr>
<td>ELE XXXX - Gen Ed Elective</td>
<td>3</td>
<td>ELE XXXX - Gen Ed Elective</td>
<td>3</td>
</tr>
<tr>
<td>SCI XXXX - Science Elective</td>
<td>4</td>
<td>ELE XXXX - Technical Elective</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>17-18</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Third Year Fall Courses</th>
<th>Credits</th>
<th>Third Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 2440 - Introduction to Business Law</td>
<td>3</td>
<td>BUS 3250 - Org. Behavior and Mgmt</td>
<td>3</td>
</tr>
<tr>
<td>CIS 4150 - Software Engineering</td>
<td>3</td>
<td>CIS 3010 - Database Systems</td>
<td>4</td>
</tr>
<tr>
<td>HUM 2060 - Cyberethics</td>
<td>3</td>
<td>CIS 4120 - Systems Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - Gen Ed Elective</td>
<td>3</td>
<td>MAT 2021 - Statistics</td>
<td>3</td>
</tr>
<tr>
<td>SCI XXXX - Science Elective</td>
<td>4</td>
<td>Select One:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>ACC 1010 - Computerized Accounting***</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BUS 2230 - Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fourth Year Fall Courses</th>
<th>Credits</th>
<th>Fourth Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 4310 - Business Information Architecture</td>
<td>3</td>
<td>BUS 4530 - Technical Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CIS 4030 - GUI Programming</td>
<td>3</td>
<td>CIS 3070 - Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>CIS 4711 - Project I</td>
<td>2</td>
<td>CIS 3152 - Networks II</td>
<td>4</td>
</tr>
<tr>
<td>ELE XXXX - Gen Ed Elective</td>
<td>3</td>
<td>CIS 4040 - Computer Security</td>
<td>3</td>
</tr>
<tr>
<td>ELE 3XXX - Gen Ed Elective</td>
<td>3</td>
<td>CIS 4712 - Project II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

*MAT-1221 is a pre-requisite to MAT-2021.

**MAT-1420 is a pre-requisite to MAT-2021.

***ACC-1010 is a prerequisite for ACC-1020 or ACC-2121.
Computer Software Engineering

Associate's Degree

Two Year Curriculum

First Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 1151</td>
<td>Website Design</td>
<td>3</td>
</tr>
<tr>
<td>CIS 2271</td>
<td>JAVA Programming</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1061</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td>HIS 1260</td>
<td>Info., Tech., Past, Present and Future</td>
<td>3</td>
</tr>
<tr>
<td>INT 1000</td>
<td>Freshman Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Select One:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE XXXX</td>
<td>General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1221</td>
<td>Finite Math*</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1420</td>
<td>Technical Math</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Credits: 17-19

First Year Spring Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 1152</td>
<td>Adv Website Design</td>
<td>4</td>
</tr>
<tr>
<td>CIS 1420</td>
<td>Computational Foundations</td>
<td>4</td>
</tr>
<tr>
<td>CIS 2025</td>
<td>"C" Programming</td>
<td>4</td>
</tr>
<tr>
<td>Select One:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE XXXX</td>
<td>General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1420</td>
<td>Technical Mathematics**</td>
<td>5</td>
</tr>
<tr>
<td>MAT 2021</td>
<td>Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 15-17

Second Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 2151</td>
<td>Computer Networks I</td>
<td>4</td>
</tr>
<tr>
<td>CIS 2260</td>
<td>Object-Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>ENG 2080</td>
<td>Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>SCI XXXX</td>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td>Select One:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELE XXXX</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2020</td>
<td>Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1520</td>
<td>Calculus for Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits: 17-18

Second Year Spring Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 2230</td>
<td>System Administration</td>
<td>4</td>
</tr>
<tr>
<td>CIS 2280</td>
<td>Perl Programming</td>
<td>2</td>
</tr>
<tr>
<td>ENG 1070</td>
<td>Effective Speaking</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX</td>
<td>Gen Ed Elective</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX</td>
<td>Technical Elective</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Total Credits: 15-16

*MAT-1221 is pre-requisite to MAT-2021.

**MAT-1420 is a pre-requisite to MAT-2021.
B.S. of Computer Software Engineering

Four Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 1151 - Website Design</td>
<td>3</td>
<td>CIS 1152 - Advanced Website Development.</td>
<td>4</td>
</tr>
<tr>
<td>CIS 2271 - JAVA Programming</td>
<td>4</td>
<td>CIS 1420 - Computational Foundations</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>CIS 2025 - "C" Programming</td>
<td>4</td>
</tr>
<tr>
<td>HIS 1260 - Info. Tech., Past, Present and Future</td>
<td>3</td>
<td>Select One:</td>
<td></td>
</tr>
<tr>
<td>INT 1000 - Freshman Seminar</td>
<td>1</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>Select One:</td>
<td></td>
<td>MAT 1420 - Technical Mathematics**</td>
<td>5</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td>MAT 2021 - Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1221 - Finite Math*</td>
<td>3</td>
<td>15-17</td>
<td></td>
</tr>
<tr>
<td>MAT 1420 - Technical Math</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 2151 - Computer Networks I</td>
<td>4</td>
<td>CIS 2230 - System Administration</td>
<td>4</td>
</tr>
<tr>
<td>CIS 2260 - Object-Oriented Programming</td>
<td>3</td>
<td>CIS 2280 - Perl Programming</td>
<td>2</td>
</tr>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
<td>ENG 1070 - Effective Speaking</td>
<td>3</td>
</tr>
<tr>
<td>SCI XXXX - Elective</td>
<td>4</td>
<td>MAT 2021 - Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Select One</td>
<td></td>
<td>ELE XXXX - Gen Ed Elective</td>
<td>3-4</td>
</tr>
<tr>
<td>ELE XXXX - Technical Elective</td>
<td>3</td>
<td>15-16</td>
<td></td>
</tr>
<tr>
<td>BUS 2020 - Principles of Management</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17-18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Third Year

<table>
<thead>
<tr>
<th>Third Year Fall Courses</th>
<th>Credits</th>
<th>Third Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 3030 - Programming Languages</td>
<td>3</td>
<td>CIS 3010 - Database Systems</td>
<td>4</td>
</tr>
<tr>
<td>CIS 3050 - Algorithms and Data Structures</td>
<td>3</td>
<td>CIS 3152 - Networks II</td>
<td>4</td>
</tr>
<tr>
<td>CIS 4150 - Software Engineering</td>
<td>3</td>
<td>CIS 4120 - Systems Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>SCI XXXX - Elective</td>
<td>4</td>
<td>ELE 3XXX General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>Select One:</td>
<td></td>
<td>Select One:</td>
<td></td>
</tr>
<tr>
<td>BUS 4310 - Business Information Architecture</td>
<td>3</td>
<td>BUS 2230 - Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td>MAT 2532 - Calculus II</td>
<td>4</td>
<td>CIS 3070 - Data Structures</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16-17</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fourth Year Fall Courses</th>
<th>Credits</th>
<th>Fourth Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 4020 - Advanced Operating Systems</td>
<td>4</td>
<td>BUS 4530 - Technical Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CIS 4711 - Project I</td>
<td>2</td>
<td>CIS 4040 - Computer Security</td>
<td>3</td>
</tr>
<tr>
<td>HUM 2060 - Cyberethics</td>
<td>3</td>
<td>CIS 4050 - Compiler Design</td>
<td>3</td>
</tr>
<tr>
<td>MAT 3720 - Topics in Discrete Mathematics</td>
<td>3</td>
<td>CIS 4712 - Project II</td>
<td>3</td>
</tr>
<tr>
<td>Select One:</td>
<td></td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>CIS 4030 - GUI Programming</td>
<td>3</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>ELT 4010 - Computer Architecture</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*MAT-1221 is a pre-requisite to MAT-2021.

**MAT-1420 is a pre-requisite to MAT-2021.
Construction Practice & Management

The building process is one of enormous satisfaction for those who enjoy a creative challenge and like to see the results of their work. While "on-the-job- training" was once the most common path of entry to a career in the building industry, the need today is for individuals with the academic background that will enable them to advance. As technology gives rise to new materials, new products, and new techniques for using them, the building industry needs people at all levels with technical knowledge and skills. And, in an increasingly competitive environment, business skills are essential for those who manage today's complex construction projects.

The Construction Practice and Management program at Vermont Technical College was developed with these needs in mind. The program is designed to serve both recent high school graduates with limited experience in the construction field, and adults already employed in the building industry who want to prepare themselves for project management and supervisory roles.

The first year of the program focuses on the skills entailed in the practice of building construction. In addition to the materials and methods of residential and light commercial construction, students study drafting and print reading, electrical and mechanical systems, math, and physics.

"Nontraditional" students—primarily adults already working in the construction industry—may be able to receive credit for many of the first-year courses through satisfactory completion of equivalency examinations.

In the second year of the program, students acquire the management skills needed by those in supervisory positions in the building industry. Second-year students take courses in construction project management, estimating, field engineering, small business management, finance, and related topics.

Graduates of the program can qualify for a range of positions in the construction field: small business owners, building materials representatives, construction supervisors, estimators, and entrepreneurs. Some may decide to continue their education and seek higher degrees in management or building engineering. Graduates who expect to run their own construction company are encouraged to explore continuing their education path in Vermont Tech's bachelor's degree program in business technology. Students in this program are required to have their own hand tools. Contact the program director or Admissions Office for details.

The minimum number of credits required for the associate's degree is 67.
First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 1000 - Freshmen Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CET 1031 - Eng and Surveying Computer Apps I</td>
<td>3</td>
</tr>
<tr>
<td>CPM 1021 - Construction Graphics I</td>
<td>1</td>
</tr>
<tr>
<td>CPM 1031 - Residential Construction Systems</td>
<td>3</td>
</tr>
<tr>
<td>CPM 1032 - Construction Lab</td>
<td>2</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1100 - Introduction to Technical Math*</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPM 1010 - Electrical/Mechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>CPM 1022 - Construction Graphics II</td>
<td>1</td>
</tr>
<tr>
<td>CPM 1111 - Commercial Construction Systems</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1210 - Principles of Mathematics*</td>
<td>3</td>
</tr>
<tr>
<td>PHY 1030 - General Physics</td>
<td>4</td>
</tr>
<tr>
<td>ELE XXXX – General Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year Summer Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPM 2810 - Summer Internship</td>
<td>1</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 1020 - Survey of Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2440 - Introduction to Business Law</td>
<td>3</td>
</tr>
<tr>
<td>CPM 2010 - Construction Estimates</td>
<td>3</td>
</tr>
<tr>
<td>CPM 2020 - Construction Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CPM 2050 - Construction Management Software</td>
<td>1</td>
</tr>
<tr>
<td>CPM 2060 - Field Engineering</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPM 2720 - Construction Supervision</td>
<td>1</td>
</tr>
</tbody>
</table>

Credits: 16

<table>
<thead>
<tr>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 2210 - Small Business Management</td>
<td>3</td>
</tr>
<tr>
<td>CPM 2030 - Elementary Theory of Structures</td>
<td>4</td>
</tr>
<tr>
<td>CPM 2730 - Construction Seminar and Project</td>
<td>4</td>
</tr>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX – General Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Credits: 17

Notes:

*MAT-1420 may be substituted for MAT-1210 or MAT-1100.

NOTE: Students who do not place in ENG-1060 or 1061 may need to take an overload or a summer course to graduate on time. Students who require remedial math and/or English may require three years to complete this degree.
Dairy Farm Management Technology

Dairy Farm Management Technology students develop the skills and knowledge needed to operate a modern dairy farm. Graduates frequently return to their home farms, are employed as herd managers, or work as breeding technicians, DHIA testers, and Peace Corps volunteers.

The college's 500-acre working farm and registered Holstein and Brown Swiss herd are integrated into all facets of the program and students are active participants in the management and operation of the farm. Practical experience at the farm is an especially valuable aspect of the program for students who lack a farm background.

Training in dairy farm management is directed at providing production know-how along with decision-making ability. For this reason, students take courses in accounting, finance, and computer applications along with their specialized subjects in agriculture.

Students may also apply for admission to the Farm and Agricultural Resource Management Stewards (F.A.R.M.S.) program offered in cooperation with the University of Vermont. FARMS students make a seamless transition from dairy farm management at Vermont Tech to a second two years at the College of Agriculture and Life Sciences at the University of Vermont. Full-tuition scholarships are available to Vermont students in the FARMS Program.

The minimum credits required for an associate's degree is 66.

First Year

<table>
<thead>
<tr>
<th>First Year Fall Semester</th>
<th>Credits</th>
<th>First Year Spring Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 1020 - Survey of Accounting</td>
<td>3</td>
<td>AGR 1012 - Agricultural Techniques II</td>
<td>1</td>
</tr>
<tr>
<td>AGR 1011 - Agricultural Techniques I</td>
<td>2</td>
<td>AGR 1030 - Animal Reproduction and Genetics</td>
<td>3</td>
</tr>
<tr>
<td>AGR 1050 - Livestock Production</td>
<td>3</td>
<td>AGR 2030 - Animal Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>CIS 1080 - Intro to Sprdshts & Db Mgmt</td>
<td>2</td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>LAH 1050 - Introduction to Soils</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1210 - Principles of Mathematics</td>
<td>3</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Semester</th>
<th>Credits</th>
<th>Second Year Spring Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR 2011 - Dairy Herd Management I</td>
<td>3</td>
<td>AGR 2012 - Dairy Herd Management II</td>
<td>3</td>
</tr>
<tr>
<td>AGR 2020 - Farm Buildings</td>
<td>2</td>
<td>AGR 2050 - Large Animal Diseases</td>
<td>3</td>
</tr>
<tr>
<td>AGR 2040 - Forage Production</td>
<td>3</td>
<td>BUS 2210 - Small Business Management</td>
<td>3</td>
</tr>
<tr>
<td>AGR 2720 - Issues and Trends in Agriculture</td>
<td>2</td>
<td>BUS 2230 - Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2260 - Principles of Financial Management</td>
<td>3</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>CHE 1020 - Introduction to Chemistry</td>
<td>4</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Students who require remedial math and/or English may require three years to complete this degree.
Dental Hygiene

Dental hygienists are important partners in the delivery of dental health care. These licensed health professionals work directly with patients to promote optimum oral health. The dental hygiene profession is primarily educational and preventative in nature and offers opportunities to work in a variety of health care settings, including general and specialty dental practices, community health agencies, and public schools.

The program is accredited by the American Dental Association Commission on Dental Accreditation. All students completing the program will be eligible to apply to participate in licensing examinations.

Graduates of the dental hygiene program can expect a high level of professional demand from employers in the private dental practice setting.

In addition, graduates may wish to pursue a bachelor’s degree, which will provide opportunities to work in alternative settings such as public health, education, research, and dental sales.

The Vermont Tech program will accept 24 students each fall. All dental hygiene professional courses must be taken in the prescribed four semester sequence. The curriculum is time intensive and the required courses are rigorous. Complete dedication to coursework is required for successful completion of the program.

Students may apply as freshman candidates, however due to the rigor of the program, many dental hygiene students enroll in some non-professional courses prior to initiating the program. Suggested courses include college level chemistry, anatomy and physiology, nutrition, English, and psychology.

Upon completion of the required credits in the Dental Hygiene program, graduates are awarded an Associate of Science degree in Dental Hygiene. Graduates are then eligible to apply to take the National Board in Dental Hygiene Examination and a regional clinical board examination, such as the Northeast Regional Board.

For licensure in Vermont, in addition to the Dental Hygiene National Board Examination and the Northeast Regional Board Examination, graduates will also be required to take a jurisprudence examination offered by the Vermont States Board of Dental Examiners. Applicants for Vermont licensure are also required to present information regarding past history of substance abuse, prior felony convictions, and failure to pay child support and/or taxes. Other states may ask similar questions. The Board is responsible for determining eligibility for dental hygiene licensure.

Applicants to the Dental Hygiene program are required to have a high school diploma or GED, plus have completed the following prerequisite courses at the high school level:

- Algebra I and II;
- Geometry;
- Biology with lab; and
- Chemistry with lab.

The minimum number of credits for the associate’s degree is 69.
Two-Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 1030 - Nutrition</td>
<td>3</td>
<td>BIO 2012 - Human Anatomy & Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>BIO 2011 - Human Anatomy & Physiology I</td>
<td>4</td>
<td>DHY 1012 - Clinical Dental Hygiene I</td>
<td>5</td>
</tr>
<tr>
<td>DHY 1011 - Pre-clinical Dental Hygiene</td>
<td>4</td>
<td>DHY 1022 - Oral Tissues II and Medical Emergencies</td>
<td>3</td>
</tr>
<tr>
<td>DHY 1021 - Oral Tissues I</td>
<td>3</td>
<td>DHY 1030 - Dental Radiography</td>
<td>3</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>PSY 1010 - Introduction to Psychology*</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 2120 - Elements of Microbiology</td>
<td>4</td>
<td>DHY 2210 - Community Oral Health</td>
<td>3</td>
</tr>
<tr>
<td>DHY 2010 - Dental Materials</td>
<td>3</td>
<td>DHY 2220 - Oral Pathology</td>
<td>2</td>
</tr>
<tr>
<td>DHY 2020 - General Pathology and Clinical Dental Pharmacology</td>
<td>3</td>
<td>DHY 2722 - Clinical Dental Hygiene III</td>
<td>6</td>
</tr>
<tr>
<td>DHY 2030 - Periodontics</td>
<td>3</td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>DHY 2721 - Clinical Dental Hygiene II</td>
<td>5</td>
<td>MAT 1040 - Mathematics for Allied Health</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>ELE XXXX - Arts & Humanities</td>
<td>3</td>
</tr>
</tbody>
</table>

* DHY Students may count PSY-1010 as their SS elective as the result of an agreement with the Department of English, Humanities and Social Sciences.

NOTE: Students who require remedial math and/or English may require three years to complete this degree. All DHY and BIO courses must be passed with a "C" or "P" or higher to graduate in this major.
Diesel Power Technology

The Diesel Power Technology program answers an increasing need for skilled diesel service technicians for the growing agricultural, heavy-duty truck and earthmoving equipment service industry. Graduates are prepared to enter the repair, parts or management aspects of the diesel power service industry. Job categories include general repair technician, parts professional, service advisor and, with experience, specialty or lead technician, parts manager and service manager. Self-employment is also possible and a Small Business Management course is included in the curriculum to acquaint all students with the operation of a business.

The program covers all aspects of the repair industry and includes modules on parts, record keeping, customer relations and preventive maintenance. In the introductory course, all students are exposed to the agricultural equipment, earthmoving equipment, and heavy-duty truck industries and have the opportunity to perform a job shadow experience at one of several shops. A 400-hour summer internship is included which provides students with production experience and an opportunity to assess future employment possibilities.

The coursework covers all systems down to the component level on agricultural equipment, earthmoving equipment and heavy-duty trucks. Electrical, electronics, and hydraulic systems maintenance, diagnosis and repair are major content areas. A combination of classroom instruction and hands-on laboratory practical experience is used at a one-to-one ratio. Students must possess their own set of hand tools for use in the laboratory and for the summer internship program.

The curriculum will use the NATEF (National Technician’s Education Foundation) and AED (Associated Equipment Distributors) diesel task mastery specifications to assess successful learning outcomes. Coursework in English and technical communication, computer skills, technical math, physics and general education are also included.

The minimum number of credits required for the Associates of Applied Science degree is 62.

Prior to applying for this program, please contact the Office of Admissions for specific application information.
First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 1080 - Intro to Spreadsheets & Db Mgmt</td>
<td>2</td>
<td>DSL 1010 - Chassis Mechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>DSL 1000 - Introduction to Diesel Power</td>
<td>4</td>
<td>DSL 1020 - Diesel Power Systems</td>
<td>4</td>
</tr>
<tr>
<td>DSL 1040 - Basic Diesel Electrical/Elec Sys</td>
<td>4</td>
<td>DSL 1050 - Preventive Maintenance</td>
<td>3</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>MAT 1100 - Introduction to Technical Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>PHY 1030 - General Physics</td>
<td>4</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSL 2010 - Fuel Systems</td>
<td>4</td>
<td>DSL 2040 - Power Transmission</td>
<td>4</td>
</tr>
<tr>
<td>DSL 2020 - Chassis Electrical & Elec Sys</td>
<td>4</td>
<td>DSL 2050 - Emissions and Engine Performance</td>
<td>4</td>
</tr>
<tr>
<td>DSL 2030 - Hydraulics</td>
<td>3</td>
<td>DSL 2060 - Fabrication</td>
<td>3</td>
</tr>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

17

NOTE: Students who require remedial math and/or English may require three years to complete this degree.
Electrical Engineering Technology

Majors in Electrical Engineering Technology gain an understanding and working knowledge of fundamental electrical, electronic, and computer principles.

Students reinforce the classroom theory with applications of their skills and knowledge in the laboratory. There are five instrumented electronics labs for use by students in the program.

Graduates of the Electrical Engineering Technology program are able to work in any number of challenging positions. As engineering technicians, they may participate in such varied activities as research, development, design, production, or manufacturing of complex electrical, electronic, or electromechanical products. Testing, quality control, marketing, installation, and customer service are among the job opportunities available.

Graduates are well prepared for admission to Vermont Tech's Bachelor of Science program in Electromechanical Engineering Technology.

With a minimum of an extra year's work, students may pursue a dual major with Computer Engineering Technology or Mechanical Engineering Technology (see catalog section on “Multiple Degrees and Majors”).

The program is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Suite 1050, Baltimore, Maryland 21202-4012, telephone (410) 347-7700.

The minimum number of credits required for a degree is 69.

Two Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 1000 - Electrical and Computer Orientations</td>
<td>1</td>
</tr>
<tr>
<td>ELT 1031 - Electrical Circuits I</td>
<td>4</td>
</tr>
<tr>
<td>ELT 1051 - Presentation Graphics I</td>
<td>1</td>
</tr>
<tr>
<td>ELT 1110 - Introduction to Digital Circuits</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1420 - Technical Mathematics</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 2025 - "C" Programming</td>
<td>4</td>
</tr>
<tr>
<td>ELT 1032 - Electrical Circuits II</td>
<td>4</td>
</tr>
<tr>
<td>ELT 1052 - Presentation Graphics II</td>
<td>1</td>
</tr>
<tr>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1041 - Physics I</td>
<td>4</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 2050 - Microcomputer Techniques for EET</td>
<td>4</td>
</tr>
<tr>
<td>ELT 2051 - Electronics I</td>
<td>4</td>
</tr>
<tr>
<td>ELT 2060 - Electronic Applications</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1042 - Physics II</td>
<td>4</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 2052 - Electronics II</td>
<td>4</td>
</tr>
<tr>
<td>ELT 2130 - Industrial Electronics</td>
<td>4</td>
</tr>
<tr>
<td>ELT 2720 - Electrical Project</td>
<td>3</td>
</tr>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

NOTE: Students taking MAT 1520 (or equivalent) may take PHY 2041/2042 instead of PHY 1041/1042.
Three Year Curriculum

First Year

<table>
<thead>
<tr>
<th>Fall Courses</th>
<th>Credits</th>
<th>Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 1000 - Electrical and Computer Orien</td>
<td>1</td>
<td>CIS 1160 - Fundamentals of Programming in C</td>
<td>1</td>
</tr>
<tr>
<td>ELT 1011 - Fundamentals of Circuits I</td>
<td>3</td>
<td>ELT 1012 - Fundamentals of Circuits II</td>
<td>3</td>
</tr>
<tr>
<td>ENG 1041 - Basic College Writing</td>
<td>4</td>
<td>ENG 1042 - Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1111 - Intermediate Algebra</td>
<td>5</td>
<td>MAT 1112 - College Algebra & Trigonometry</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall Courses</th>
<th>Credits</th>
<th>Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 2025 - "C" Programming</td>
<td>4</td>
<td>ELT 1032 - Electrical Circuits II</td>
<td>4</td>
</tr>
<tr>
<td>ELT 1051 - Presentation Graphics I</td>
<td>1</td>
<td>ELT 1052 - Presentation Graphics II</td>
<td>1</td>
</tr>
<tr>
<td>ENG 1043 - Research Writing*</td>
<td>4</td>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1113 - Pre-Calculus</td>
<td>5</td>
<td>PHY 1022 - Energy Conservation and Equil</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1021 - Introduction to Newtonian Mech</td>
<td>4</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall Courses</th>
<th>Credits</th>
<th>Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 2050 - Microcomputer Tech./Elec. Eng.</td>
<td>4</td>
<td>ELT 2052 - Electronics II</td>
<td>4</td>
</tr>
<tr>
<td>ELT 2051 - Electronics I</td>
<td>4</td>
<td>ELT 2130 - Industrial Electronics</td>
<td>4</td>
</tr>
<tr>
<td>ELT 2060 - Electronic Applications</td>
<td>4</td>
<td>ELT 2720 - Electrical Project</td>
<td>3</td>
</tr>
<tr>
<td>PHY 1042 - Physics II</td>
<td>4</td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

* Students who have satisfied ENG 1043 may take ELT 1110.
Bachelor of Science in Electromechanical Engineering Technology

In today's global marketplace, a vast array of new products are emerging all the time. As varied as human inventiveness can devise, they have at least this in common: nearly all include mechanical and electrical components or rely on them in the manufacturing process.

Traditionally, the companies engaged in design and manufacturing form teams—usually made up of mechanical, electrical, and computer engineers and technicians. Each team member contributes specific expertise as needed at various stages of the project, but often with little insight into the requirements of the other disciplines. As a result, the process as a whole is less efficient than it might ideally be.

The Electromechanical Engineering Technology (ELM) program bridges this gap with an interdisciplinary approach to problem solving in a design and manufacturing environment where, increasingly, the challenges are both mechanical and electrical. Graduates are prepared to bring this broader understanding to the design, development, manufacturing, and technical support of emerging products, integrating and improving both the product and the process. In larger firms, this might be as a member of the design or manufacturing team, while smaller companies might assign this role to a single individual.

The ELM program is the second leg of a "two-plus-two" curriculum. The junior year offers courses in advanced math, science, and sensor technology, along with "crossover" courses that vary according to a student's prior educational background—students with electronics backgrounds focus on mechanical processes and principles, and those with mechanical backgrounds concentrate on electronics.

Students from other majors may be required to take courses other than specified. This junior "crossover" year can accommodate students with a variety of academic credits and competencies.

Although the program is designed primarily for students who have completed an ABET-accredited associate's degree in either Electrical Engineering Technology or Mechanical Engineering Technology, the ELM curriculum may also be appropriate for graduates of other engineering technology associate's degree programs. Students entering ELM on completion of one of these programs, or its equivalent at another institution, may be assigned additional course requirements and a course sequence that may vary in some other respects from that outlined below, depending on the student's academic background.
The fourth year of the ELM program incorporates computer programming, data communications, power systems, and control systems, along with the capstone course, a two-semester ELM senior project. This project provides an opportunity to research and develop a significant project that integrates mechanical and electrical subsystems.

Students in the program are also encouraged to add further depth to their technical backgrounds through elective courses in statistics, chemistry, business management, and advanced programming. General Education electives (a total of 24 credits over four years required) provide the exposure to the humanities and social sciences so important to the total educational experience.

The minimum number of credits required in the junior and senior years for the B.S. in Electromechanical Engineering Technology is 68.

Four-year Curriculum--First & Second Years

Student admitted to the Electromechanical Engineering Technology program must have completed a strong two-year associate's degree program in engineering technology at an accredited college or university, preferably including electrical, mechanical, or computer engineering technology courses.

This program is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Suite 1050, Baltimore, Maryland 21202-4012, telephone (410) 347-7700.

<table>
<thead>
<tr>
<th>Third Year Fall Courses</th>
<th>Credits</th>
<th>Third Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELM 3015 - Sensors and Instrumentation</td>
<td>2</td>
<td>MAT 3170 - Applied Math for Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MAT 2532 - Calculus II</td>
<td>4</td>
<td>PHY 3120 - Introduction to Modern Physics</td>
<td>4</td>
</tr>
<tr>
<td>ELE 3XXX - General Education Elective*</td>
<td>3</td>
<td>ELE XXXX - Technical Elective ***</td>
<td>3-4</td>
</tr>
<tr>
<td>MEC 1011 - Design Communication I</td>
<td>2</td>
<td>MEC 3020 - Manufacturing Proc & Mach Design</td>
<td>3</td>
</tr>
<tr>
<td>MEC 2010 - Fluid Mechanics and Fluid Systems</td>
<td>4</td>
<td>MEC 3030 - Properties and Mech of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MEC 2020 - Applied Mechanics</td>
<td>3</td>
<td>ELT 2061 - Electromechanical Systems I</td>
<td>4</td>
</tr>
<tr>
<td>ELT 2050 - Microcomputer Techniques for EET</td>
<td>4</td>
<td>ELT 3030 - Solid State Electronics</td>
<td>4</td>
</tr>
<tr>
<td>ELT 3060 - Electrical Circuit Analyses</td>
<td>3</td>
<td>ELE XXXX - Technical Elective ***</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year Fall Courses</th>
<th>Credits</th>
<th>Fourth Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 2025 - "C" Programming</td>
<td>4</td>
<td>ELM 4232 - Control Systems II</td>
<td>4</td>
</tr>
<tr>
<td>ELM 4015 - Electro-Mechanical Power Systems</td>
<td>4</td>
<td>ELM 4702 - ELM Project II</td>
<td>3</td>
</tr>
<tr>
<td>ELM 4231 - Control Systems I</td>
<td>4</td>
<td>ELM 3040 - Electronic and Data Communications</td>
<td>4</td>
</tr>
<tr>
<td>ELM 4701 - ELM Project I</td>
<td>2</td>
<td>ELE XXXX - General Education Elective*</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective*</td>
<td>3</td>
<td>ELE XXXX - Technical Elective ***</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
* General Education requirements for the BSELM program include a cumulative 24 credits, 9 of which must contain a strong writing component. Some of these credits may have been earned in previous degree studies. Three of these credits are included in the ELM Senior Project courses (ELM-4701 and ELM-4702), and three credits must be at a GE 3XX level. See "General Education Electives" for course offerings.

** EET > ELM courses required of students with two-year electrical/electronics degrees; MEC > ELM courses required of students with two-year mechanical degrees. For students with other degrees, these course requirements may change.

*** Technical Electives may be selected from several areas, including Computer Engineering Technology, Science, Mathematics, and Business, subject to approval by the student’s advisor: CHE-1031, MAT-2533, BUS-2210, and (for EET>ELM track students only) MEC-2050 or MEC-2130, MAT-2021, BUS-2440.
General Engineering Technology

The General Engineering Technology degree program is designed to support the workforce education needs of a variety of companies and industries seeking engineering technology degree opportunities. Administered by the College's Technology Extension Division, GET degree programs are industry-sponsored and offered primarily at the facilities of sponsoring organizations. The curriculum consists of initial courses common to all GET degree programs, as well as a sequence of technology foundation and technical emphasis courses specific to the workforce education needs being served. These industry-specific technical courses are developed by a curriculum development team comprised of Vermont Tech faculty and representatives from the sponsoring organizations.

The programs offer applications-oriented science and technology curricula delivered in nontraditional modes to accommodate student and industry needs. The goal is to offer students a flexible, interdisciplinary path to the acquisition of basic engineering concepts and specific job-related skills needed to excel in their current positions and prepare for career growth. A minimum of 60 credits is required for the degree.

Initial Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>PHY 1041 - Physics I</td>
<td>4</td>
</tr>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
<td>ELE XXXX - Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1420 - Technical Mathematics</td>
<td>5</td>
<td>ELE XXXX - Arts & Humanities Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Foundation Courses

Course sequences, depending on the industry emphasis, in preparation for technical coursework.

For Example,

<table>
<thead>
<tr>
<th>Electronic-Aerospace</th>
<th>Credits</th>
<th>Semiconductor</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 1070 - Electronic Circuits</td>
<td>4</td>
<td>CHE 1031 - General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CIS 1030 - Introduction to Computer</td>
<td>3</td>
<td>CIS 2025 - 'C' Programming</td>
<td>4</td>
</tr>
<tr>
<td>CIS 2025 - 'C' Programming</td>
<td>4</td>
<td>ELT 1101 - General Electronics I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1042 - Physics II</td>
<td>4</td>
<td>PHY 1042 - Physics II</td>
<td>4</td>
</tr>
</tbody>
</table>

Technical Courses

Developed by the curriculum team: Vermont Tech faculty and industry representatives.
Landscape Development & Ornamental Horticulture

Landscape Development and Ornamental Horticulture encompasses some of the most rapidly expanding areas of agriculture, not only in Vermont, but nationwide. Combined, the industries of landscape design, construction and maintenance, and nursery and greenhouse production total just over 80 billion dollars annually in retail and wholesale sales. A recent survey completed by Associated Landscape Contractors of America (ALCA) reports that between 2002 and 2003 there was a 30% increase in professional landscape services. These trends are predicted to continue in the foreseeable future.

Rapid growth in the horticultural industry means opportunities for graduates. Among the numerous career options are positions as landscape designers, contractors and maintenance personnel, greenhouse growers, plant propagators, perennial growers, nursery and garden center operators, salespeople for horticultural products, and technicians for state and federal regulatory agencies. Projected job growth is excellent, and there is a steady trend toward higher salaries.

The curriculum features courses such as Woody Ornamentals, Herbaceous Plant Materials, Entomology, Greenhouse Management, and Plant Pathology. In addition, we offer Landscape Graphics, Landscape Construction and Maintenance, AutoCAD, and two semesters of Landscape Design.

The program combines these horticulture and landscape classes with offerings in math, English, general education, and business. Graduates from this program are well-prepared to enter today’s dynamic horticultural industry or to continue their education at a four-year college or university.

The degree requires a minimum of 69 credits.
First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 1080 - Intro to Spreadsheet & Dbs Mgmt</td>
<td>2</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
</tr>
<tr>
<td>LAH 1000 - Freshman Orientation</td>
<td>1</td>
</tr>
<tr>
<td>LAH 1020 - Introduction to Horticulture</td>
<td>3</td>
</tr>
<tr>
<td>LAH 1021 - Landscape Graphics</td>
<td>3</td>
</tr>
<tr>
<td>LAH 1030 - Woody Ornamentals</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1210 - Principles of Mathematics</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 18

First Year Spring Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 1020 - Survey of Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BIO 1220 - Botany</td>
<td>4</td>
</tr>
<tr>
<td>LAH 1050 - Introduction to Soils</td>
<td>4</td>
</tr>
<tr>
<td>LAH 2011 - Introduction to Landscape Design</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 18

First Year Summer Course

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAH 2810 - Landscape & Hort. Internship</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits: 18

Second Year

Second Year Fall Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 2040 - Entomology</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2210 - Small Business Management</td>
<td>3</td>
</tr>
<tr>
<td>LAH 2030 - Herbaceous Plant Materials</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td>LAH 2010 - Landscape Construction and Mgmt</td>
<td>4</td>
</tr>
<tr>
<td>LAH 2020 - Plant Propagation</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 15-16

Second Year Spring Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 2030 - Plant Pathology</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2230 - Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>LAH 2720 - Landscape Design/Orn. Hort. Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ELE XXXX - Technical Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Select One:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAH 1031 - CAD for Landscape Design</td>
<td>1</td>
</tr>
<tr>
<td>LAH 2012 - Advanced Landscape Design</td>
<td>3</td>
</tr>
<tr>
<td>LAH 1040 - Greenhouse Management</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits: 18

Select:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAH 1031 - CAD for Landscape Design</td>
<td>1</td>
</tr>
<tr>
<td>LAH 2012 - Advanced Landscape Design</td>
<td>3</td>
</tr>
<tr>
<td>LAH 1040 - Greenhouse Management</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits: 18

NOTE:

Students who require remedial math and/or English may require three years to complete this degree.
Mechanical Engineering Technology

Almost every device in use today has its origins in the scientific and mathematical principles of Mechanical Engineering Technology. Graduates of this program are involved in the design, testing, manufacture, installation, maintenance, distribution, and documentation of mechanical systems and devices.

Mechanical engineering technicians provide an indispensable link between the professional engineer involved with research, design, and development, and the skilled craftsperson who manufactures and assembles the high technology devices that enable people, companies, and nations to function every day. Few fields of study offer a wider range of opportunities for graduates.

Students learn how to communicate with all levels of industrial people; to produce sketches and drawings used in the manufacture of machines; to analyze forces imposed upon mechanical objects; to determine appropriate sizes and materials for mechanical parts; to test finished assemblies for proper design; to calculate the energy requirements of machines and analyze the fluid systems that control them; to deal with the problem of heat and energy flow in mechanical systems; and to control mechanisms by the use of electrical power and electronics.

The computer is used as a teaching, learning, and production tool in such areas as computer-aided design and drafting (CAD), computer-aided manufacturing (CAM), computer-numerical-controlled machining (CNC), problem analysis with spreadsheets, and technical writing with word processors. Laboratories give the student hands-on training in practical working conditions.

Graduates are well prepared for admission to Vermont Tech’s Bachelor of Science program in Electromechanical Engineering Technology.

The minimum number of credits required for a degree is 69.
Two Year Curriculum
First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1420 - Technical Mathematics</td>
<td>5</td>
</tr>
<tr>
<td>MEC 1000 - Freshman Seminar</td>
<td>1</td>
</tr>
<tr>
<td>MEC 1011 - Design Communication I</td>
<td>2</td>
</tr>
<tr>
<td>MEC 1020 - Manufacturing Processes</td>
<td>2</td>
</tr>
<tr>
<td>MEC 1050 - Comp. Appls for Mechanical Eng</td>
<td>1</td>
</tr>
<tr>
<td>PHY 1041 - Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>MEC 1012 - Design Communication II</td>
<td>2</td>
</tr>
<tr>
<td>MEC 1040 - Intro to Materials Science and Eng</td>
<td>3</td>
</tr>
<tr>
<td>PHY 1042 - Physics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>
Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 2071 - Basic Electricity</td>
<td>3</td>
</tr>
<tr>
<td>MEC 2010 - Fluid Mechanics and Fluid Systems</td>
<td>4</td>
</tr>
<tr>
<td>MEC 2020 - Applied Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MEC 2040 - Computer-Aided Technology</td>
<td>2</td>
</tr>
<tr>
<td>MEC 2060 - Mechanisms</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 2072 - Electronics</td>
<td>4</td>
</tr>
<tr>
<td>MEC 2030 - Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td>MEC 2050 - Thermodynamics and Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>MEC 2720 - Mechanical Projects</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

18

Three Year Curriculum

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 1041 - Basic College Writing</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1111 - Intermediate Algebra</td>
<td>5</td>
</tr>
<tr>
<td>MEC 1000 - Freshman Seminar</td>
<td>1</td>
</tr>
<tr>
<td>MEC 1011 - Design Communication I</td>
<td>2</td>
</tr>
<tr>
<td>MEC 1050 - Comp. Appls. for Mech Eng</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 1042 - Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1112 - College Algebra & Trigonometry</td>
<td>5</td>
</tr>
<tr>
<td>MEC 1012 - Design Communication II</td>
<td>2</td>
</tr>
<tr>
<td>PHY 1021 - Introduction to Newtonian Mechs</td>
<td>4</td>
</tr>
</tbody>
</table>

14

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 1043 - Research Writing</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1113 - Pre-Calculus</td>
<td>5</td>
</tr>
<tr>
<td>MEC 1020 - Manufacturing Processes</td>
<td>2</td>
</tr>
<tr>
<td>PHY 1022 - Energy Conservation and Equil</td>
<td>4</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1520 - Calculus for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>MEC 1040 - Nature and Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>PHY 1042 - Physics II</td>
<td>4</td>
</tr>
</tbody>
</table>

15

Third Year

<table>
<thead>
<tr>
<th>Third Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 2071 - Basic Electricity</td>
<td>3</td>
</tr>
<tr>
<td>MEC 2010 - Fluid Mechanics and Fluid Systems</td>
<td>4</td>
</tr>
<tr>
<td>MEC 2020 - Applied Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MEC 2040 - Computer-Aided Technology</td>
<td>2</td>
</tr>
<tr>
<td>MEC 2060 - Mechanisms</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 2072 - Electronics</td>
<td>4</td>
</tr>
<tr>
<td>MEC 2030 - Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td>MEC 2050 - Thermodynamics and Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>MEC 2720 - Mechanical Projects</td>
<td>3</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

18
Vermont Technical College offers a Practical Nursing (PN) certificate program and an associate's degree Nursing program. These programs are offered at four locations across the state: Putnam/Bennington Campus; Thompson/Brattleboro Campus; Fanny Allen/Williston Campus; and Randolph Center Campus. The PN program is also offered in a distance learning format in several locations around Vermont in collaboration with the Community College of Vermont and health care providers in various locales.

The nursing curriculum is built upon the foundational concepts of Dorothea Orem and eight outcomes that are prominent in each nursing course: Nursing Process; Scientific Principles; Communication; Ethical/Legal Principles; Nursing Role; Provider of Care; Teaching/Learning; and Accountability/Self Growth. As students move into increasingly complex care issues, theories are explored in more detail, with the goal of appropriate application to each clinical environment.

The PN program extends over two semesters and one summer session (ten-and-one-half months). Students learn practical nursing skills through independent study, lectures, demonstrations, and practice in a nursing arts lab. Under instructor supervision, students also provide patient care in a variety of health care settings either on site or in neighboring health care agencies.

The programs carry college credit and are approved by the Vermont State Board of Nursing, 81 River Street, Drawer 9, Montpelier VT 05602. The PN program is also accredited by the National League for Nursing Accrediting Commission (NLNAC), 61 Broadway, 33rd floor, New York, NY 10006. Credits in both levels of the program are assigned as follows: 1 lecture hour equals 1 credit; every 3 clinical/lab hours equals 1 credit.

Upon completion of the program, PN graduates are eligible to apply to take the National Council Licensure Examination for Practical Nurses. Associate’s degree program graduates are awarded an Associate of Science degree in Nursing, and are eligible to apply to take the National Council Licensure Examination for Registered Nurses. From graduates of both programs, the Vermont State Board of Nursing application requests information regarding past history of substance abuse, prior felony convictions, and failure to pay child support and/or taxes. Other states may ask similar questions. It is the Board’s responsibility to determine eligibility to sit for the licensure examination and to issue the license to practice.

After licensure, graduates typically find employment in hospitals, nursing homes, and other health care agencies, and work under the supervision of a registered nurse, physician, or dentist. With experience, they can assume increasing responsibilities in the nursing field.
The associate's degree program articulates with the PN program and requires two further semesters of full-time study. The curriculum includes microbiology, technical communication, mathematics, the humanities, trends in nursing, advanced pharmacology and further skill development in both lecture and lab settings. The clinical component also continues into the second year.

The Associate of Science degree in Nursing program is selective and rigorous and there is no assurance of admission from the PN program. Additionally, the twelve clinical credits earned in the PN program do not transfer to the AD program.

Graduates are prepared to work in a health care setting under the supervision of more experienced practitioners. With experience, they can assume increasing responsibilities, and may be responsible for supervising others.

Certificate in Practical Nursing

First Year

<table>
<thead>
<tr>
<th>Fall Courses</th>
<th>Credits</th>
<th>Winter Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 1030 - Nutrition</td>
<td>3</td>
<td>BIO 2012 - Human Anatomy & Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>BIO 2011 - Human Anatomy & Physiology I</td>
<td>4</td>
<td>NUR 0121 - Principles & Pract of Nursing II Lab</td>
<td>4</td>
</tr>
<tr>
<td>NUR 0111 - Principles & Pract of Nursing I Lab</td>
<td>4</td>
<td>NUR 1010 - Pharmacology for Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NUR 1020 - The Nurse-Client Relationship</td>
<td>3</td>
<td>NUR 1121 - Principles and Pract of Nursing II</td>
<td>5</td>
</tr>
<tr>
<td>NUR 1111 - Principles & Pract of Nursing I</td>
<td>5</td>
<td>PSY 1050 - Human Growth & Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

Spring 2 Courses

| NUR 0131 - Principles & Pract of Nursing III Lab | 4 |
| NUR 1131 - Principles & Practices of Nursing III | 5 |

Second Year

<table>
<thead>
<tr>
<th>Fall Courses</th>
<th>Credits</th>
<th>Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 2120 - Elements of Microbiology</td>
<td>4</td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>MAT 1040 - Mathematics for Allied Health</td>
<td>2</td>
</tr>
<tr>
<td>NUR 2010 - LPN to RN Trans /Trends in Nursing</td>
<td>2</td>
<td>NUR 2011 - Advanced Pharmacology</td>
<td>1</td>
</tr>
<tr>
<td>NUR 2030 - Principles & Pract of Nursing IV</td>
<td>3</td>
<td>NUR 2130 - Principles & Pract of Nursing V</td>
<td>5</td>
</tr>
<tr>
<td>NUR 2040 - Principles & Pract of Nursing IV Lab</td>
<td>2</td>
<td>NUR 2140 - Principles & Pract of Nursing V Lab</td>
<td>4</td>
</tr>
<tr>
<td>ELE XXXX - Art/Humanities Elective</td>
<td>3</td>
<td>PSY 1010 - Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

NOTES: In order to graduate, students must receive a grade of “P,” “C,” or better in all NUR and BIO, as well as courses in PSY-1050.

First-year curriculum includes 495 hours of theory and 630 hours of clinical/lab; second-year curriculum includes 420 hours of theory and 315 hours of clinical/lab.

Students must re-apply through Vermont Tech Admissions Office and be accepted in order to continue directly from the LPN program to the NUR program.
Respiratory Therapy

Respiratory Therapy is an allied health profession in which the provider cares for patients with breathing disorders. The respiratory therapist assumes primary responsibility for all respiratory care treatments. They treat patients of all ages, from premature infants to the elderly. Health conditions that require respiratory care include asthma, emphysema, chronic obstructive lung disease, pneumonia, cystic fibrosis, infant respiratory distress syndrome, and conditions brought on by shock, trauma or postoperative complications.

Respiratory therapists are employed in hospital specialty areas such as labor and delivery, neonatal and pediatric intensive care units, pulmonary function laboratories, sleep laboratories, adult intensive care units, extra corporeal membrane oxygenation, and ECG testing. In addition to hospitals, the respiratory therapist delivers respiratory care in the home, rehabilitation agencies, nursing homes, out-patient clinics, and physicians’ offices. Starting yearly salaries often begin between $35,000 – $40,000.

The U.S. Department of Labor states that demand for respiratory therapists, also known as respiratory technicians or respiratory care practitioners, is growing faster than the average for all occupations. Job opportunities are best for therapists with cardiopulmonary care skills and for those with experience working with newborns and infants.

Students graduate from the program with an Associate of Science degree in Respiratory Therapy. The program is accredited by the Commission on Accreditation of Allied Health Programs, in collaboration with the Committee on Accreditation for Respiratory Care Programs 1248 Harwood Rd., Bedford, Texas 76021-4244. Graduates are eligible to apply to take the National Board of Respiratory Care registry exam, earning the title of respiratory therapist.

The minimum number of credits for a degree is 64.

First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 2011 - Human Anatomy & Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
</tr>
<tr>
<td>RSP 1000 - Introduction to Respiratory Practices</td>
<td>1</td>
</tr>
<tr>
<td>RSP 1011 - Respiratory Care I</td>
<td>4</td>
</tr>
<tr>
<td>ELE XXXX - Art/Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 2012 - Human Anatomy & Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1040 - Mathematics for Allied Health</td>
<td>2</td>
</tr>
<tr>
<td>RSP 1012 - Respiratory Care II</td>
<td>4</td>
</tr>
<tr>
<td>RSP 1210 - Respiratory Anatomy and Physiology</td>
<td>3</td>
</tr>
<tr>
<td>RSP 1801 - Respiratory Clinical Experience</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

First Year Summer

RSP 2810 - Respiratory Internship 1

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 2120 - Elements of Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>RSP 2011 - Cardiopulmonary Disease I</td>
<td>5</td>
</tr>
<tr>
<td>RSP 2013 - Respiratory Care III</td>
<td>3</td>
</tr>
<tr>
<td>RSP 2802 - Respiratory Clinical Field Exp II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>PSY 1010 - Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>RSP 2012 - Cardiopulmonary Disease II</td>
<td>5</td>
</tr>
<tr>
<td>RSP 2803 - Respiratory Clinical Experience III</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

NOTE: Students who require remedial math and/or English may require three years to complete this degree. Also, all RSP and BIO courses must be passed with a grade of “C”, “P” or higher to graduate in this major.
Technical Education Program

The Vermont Mentor Program is an alternative process of teacher certification for people with professional experience in trades and industry and technical professional areas who need to complete the technical education courses required to teach in Vermont’s Career and Technical Education Centers. Once employed as a Trades and Industry instructor or technical professional in a technical center, the student then takes: Methods and Materials in Technical Education I & II; Current Issues and Trends in Technical Education; Special Needs Students in Technical Education; Reading in Secondary Content Areas; and Adolescent Development.

Certificate in Technical Education Instruction

Students enrolled in the Vermont Mentor Program can earn a certificate in Technical Education Instruction at Vermont Technical College. The certificate will be awarded upon application and successful completion of the following 24 credits:

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDU 2051 - Teaching Methods I</td>
<td>3</td>
</tr>
<tr>
<td>EDU 2052 - Teaching Methods I continued</td>
<td>3</td>
</tr>
<tr>
<td>EDU 2061 - Teaching Methods II</td>
<td>3</td>
</tr>
<tr>
<td>EDU 2062 - Teaching Methods II continued</td>
<td>3</td>
</tr>
<tr>
<td>PSY 2310 - Adolescent Development</td>
<td>3</td>
</tr>
<tr>
<td>TEC 1110 - Issues and Trends in Technical Education</td>
<td>3</td>
</tr>
<tr>
<td>TEC 1120 - Reading in Technical Education Content Areas</td>
<td>3</td>
</tr>
<tr>
<td>TEC 1130 - Vocational Instruction for Students with Special Needs</td>
<td>3</td>
</tr>
</tbody>
</table>

NOTE: Enrollment in the Technical Education Mentor Program or permission of the instructor is the prerequisite for all of the above courses.
Telecommunications Technology

Vermont Technical College offers a program leading to the Associate of Applied Science degree in Telecommunications Technology. The program is part of a cooperative effort among Vermont Tech, the telecommunications industry, and other New England colleges. Presently, enrollment in the program is open only to employees of sponsoring organizations.

The program provides a thorough examination of state-of-the-art telecommunications technology, as well as a solid foundation in mathematics, electronics, physics, and general education subjects. The instructional approach is applications-oriented, with a science and technology emphasis. Graduates of the program are proficient in the broad range of technical competencies required of highly-skilled telecommunications technicians.

The general education foundation in mathematics, computer applications, social science, and written and oral communications provides essential support for the specialized coursework in electronics and technical subjects specific to the telecommunications industry.

Eight Semesters

<table>
<thead>
<tr>
<th>FALL First Semester</th>
<th>Credits</th>
<th>SPRING Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 1030 - Introduction to Computer</td>
<td>3</td>
<td>ELT 1070 - Electrical Circuits</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1421 - Tech Math I</td>
<td>4</td>
<td>ENG 1061 - English Composition</td>
<td>3</td>
</tr>
<tr>
<td>TCT 1000 - Telecommunications Orientation</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FALL Third Semester</th>
<th>Credits</th>
<th>SPRING Fourth Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 1101 - General Electronics I</td>
<td>4</td>
<td>ELT 1102 - General Electronics II</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1422 - Tech Math II</td>
<td>4</td>
<td>PHY 1041 - Physics I</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FALL Fifth Semester</th>
<th>Credits</th>
<th>SPRING Sixth Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT 1110 - Introduction to Digital Circuits</td>
<td>4</td>
<td>TCT 1002 - Telecom II-Intro to Voice and Data</td>
<td>4</td>
</tr>
<tr>
<td>TCT 1001 - Telecommunications I</td>
<td>4</td>
<td>ELT 2030 - Digital Electronics II</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FALL Seventh Semester</th>
<th>Credits</th>
<th>SPRING Eighth Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
<td>SSC XXXX - Social Science</td>
<td>3</td>
</tr>
<tr>
<td>TCT 2003 - Telecomm II-LANS and WANS</td>
<td>4</td>
<td>TCT 2004 - Telecom IV-Advanced Topics</td>
<td>4</td>
</tr>
</tbody>
</table>

(TCT-0001 Asset Test Preparation (0 credits) may be a prerequisite to the first semester for some students.)
Undeclared Associate Program

Students who have not decided on a specific program of study and who have met the acceptance requirements of Vermont Technical College may be admitted to the college in the associate degree undeclared program. Enrollment in this program may begin in either the fall or spring semester.

Students who might be interested in this program may be uncertain about their major, want to begin college in mid-year, would like a lighter credit load each semester, would like a slower pace, or have other plans for the fall semester.

Important information about the undeclared program.

- Enrollment in this program will increase the time necessary to complete a degree.
- An undeclared program will either be in engineering or non-engineering and may be determined by the results of the Vermont Tech math placement.
- Students who enroll in the undeclared program will be expected to select a degree program as soon as possible. When ready to declare a degree program, students will apply for a change of program during the pre-registration cycle for the following term.
- Acceptance into the degree program is contingent upon space availability and departmental approval.
- Once in a degree program, the students are expected to meet all the requirements of that program for graduation.
- Faculty advisors from the General Education department will normally advise undeclared students.
- A student will not be eligible to graduate as undeclared.

Note: A minimum of 12 credits are for full-time and on-campus residency. Subsequent terms may be scheduled as necessary.

Sample First Year Curriculum

Sample Semesters

<table>
<thead>
<tr>
<th>Fall Entry</th>
<th>Credits</th>
<th>Spring Entry</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELE XXXX - Freshman Orientation (if available)</td>
<td>0-1</td>
<td>CIS XXXX - Computer Operations</td>
<td>0-2</td>
</tr>
<tr>
<td>CIS XXXX - Computer Operations</td>
<td>0-2</td>
<td>ENG XXXX - English (based on placement)</td>
<td>3-4</td>
</tr>
<tr>
<td>ENG XXXX - English (based on placement)</td>
<td>3-4</td>
<td>MAT XXXX - Mathematics (based on plcmnt)</td>
<td>2-5</td>
</tr>
<tr>
<td>MAT XXXX - Mathematics (based on plcmnt)</td>
<td>2-5</td>
<td>SCI XXXX - Science (as desired)</td>
<td>3-4</td>
</tr>
<tr>
<td>SCI XXXX - Science (as desired)</td>
<td>3-4</td>
<td>ELE XXXX - Elective (as desired)</td>
<td>0-3</td>
</tr>
<tr>
<td>ELE XXXX - Elective (as desired)</td>
<td>0-3</td>
<td>XXX XXXX - Major Coursework</td>
<td>3-8</td>
</tr>
<tr>
<td>XXX XXXX - Major Coursework</td>
<td>3-8</td>
<td></td>
<td>15-18</td>
</tr>
</tbody>
</table>

123
Veterinary Technology

Veterinary Technology (VET) graduates are very much in demand and this demand is expected to continue to grow. Technicians form an important link between animals and the veterinarian. Under the supervision of a veterinarian, they work in the laboratory, pharmacy, radiology, and surgical areas, and also perform patient reception and client education duties.

Employment opportunities include veterinary practices, universities, pharmaceutical/biological research companies, diagnostic labs, feed companies, zoos, and government veterinary facilities.

A full-time veterinarian instructs students in the core program with support from other faculty and a full-time veterinary technician.

Specific courses are taught on a practical level, with the intent of making the student a competent assistant.

“Hands-on” experience in the laboratories is stressed. Favorable staff/student ratios allow students excellent opportunities to gain experience in a variety of procedures.

The college farm gives students excellent exposure to dairy cattle and horses, and the newly-remodeled facility on the main campus provides a modern setting for experience with dogs, cats, rodents, reptiles and birds. Basic restraint and handling is also taught on sheep, chickens, and rabbits.

All students are required to adhere to the policies and procedures set forth in the Vermont Tech Veterinary Technology Student Handbook. These policies include safety issues related to pregnancy and immunizations. The college strongly recommends that Vet Tech students receive human prophylactic rabies vaccine, which is available through the college (at the students’ expense) in the fall semester. An information session on specific policies and procedures is conducted early in the fall, or please contact the Vet Tech Program Director for additional details.

Because of a high demand for this program, students are advised to apply early. A personal interview with the program director is required.

The minimum number of credits required for a degree is 70.
First Year

<table>
<thead>
<tr>
<th>First Year Fall Courses</th>
<th>Credits</th>
<th>First Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 2320 - Zoology</td>
<td>4</td>
<td>MAT 1210 - Principles of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>CHE 1020 - Introduction to Chemistry</td>
<td>4</td>
<td>VET 1020 - Animal Anatomy and Physiology</td>
<td>4</td>
</tr>
<tr>
<td>ENG 1061 - English Composition</td>
<td>3</td>
<td>VET 1040 - Animal Diseases</td>
<td>4</td>
</tr>
<tr>
<td>VET 1010 - Introduction to Veterinary Technology</td>
<td>1</td>
<td>VET 1052 - Animal Care II*</td>
<td>1</td>
</tr>
<tr>
<td>VET 1030 - Animal Care and Restraint</td>
<td>1</td>
<td>VET 1060 - Laboratory Techniques</td>
<td>5</td>
</tr>
<tr>
<td>VET 1051 - Animal Care I*</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Year Summer Course

<table>
<thead>
<tr>
<th>VET 2810 - Vet Externship</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Second Year Fall Courses</th>
<th>Credits</th>
<th>Second Year Spring Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 1080 - Intro to Sprdshts & Database Mgmt</td>
<td>2</td>
<td>ENG 2080 - Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>VET 2011 - Veterinary Clinical Techniques I</td>
<td>3</td>
<td>VET 2012 - Veterinary Clinical Techniques II</td>
<td>3</td>
</tr>
<tr>
<td>VET 2030 - Animal Nutrition</td>
<td>2</td>
<td>VET 2040 - Reproduction and Genetics</td>
<td>3</td>
</tr>
<tr>
<td>VET 2050 - Applied Laboratory Methods</td>
<td>4</td>
<td>VET 2060 - Veterinary Office Procedures</td>
<td>3</td>
</tr>
<tr>
<td>VET 2070 - Pharmacology and Toxicology</td>
<td>3</td>
<td>VET 2080 - Animal Behavior</td>
<td>2</td>
</tr>
<tr>
<td>VET 2720 - Veterinary Supervisor*</td>
<td>1</td>
<td>VET 2090 - Veterinary Technician National Exam</td>
<td>1</td>
</tr>
<tr>
<td>ELE XXXX - General Education Elective</td>
<td>3</td>
<td>ELE 2XXX - General Education Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Optional:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VET 2720 - Veterinary Supervisor*</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-19</td>
<td></td>
</tr>
</tbody>
</table>

* Must be taken at least once, but may be repeated for credit.

NOTES: In order to graduate, students must receive a grade of "P", "C" or better in all VET courses and BIO 2320 - Zoology. Students who do not place in ENG 1060 or 1061 may need to take an overload or a summer course to complete this program.
General Education Electives

The goals of the Vermont Technical College general education component, both within the prescribed and elective areas of the curriculum, are to foster within each student an appreciation for the major domains of human achievement, to provide a common educational experience, refine critical thinking, writing, information literacy and communication skills, nurture civic responsibility, to celebrate the diversity and common values and to foster life-long learning.

The college does not guarantee that general education or elective courses will be available and reserves the right to withdraw or restrict any offering: (1) if an insufficient number of students enroll in the course; (2) if registrations exceed class capacity; or, (3) if the availability of faculty or other resources is limited.

Course requirements may also be fulfilled by simultaneous enrollment at other Vermont State Colleges under the VSC consortium agreement. Students may not use one course to meet more than one requirement within their program.

Depending on specific program requirements, each associate degree student will complete a selection of the following:

- 3 credits of English (composition, writing & research)
- 3 credits of Communication
- 4 credits of Natural Sciences
- 1 credit of Information Technology
- 3 credits of Art/Humanities
- 3 credits of Social Science
- 3 credits of Mathematics/Critical Thinking

In addition to the basic associate requirements, and depending on specific program requirements, each bachelor student will complete a selection of the following:

- 9 credits of Art/Humanities or Social Sciences
 (3 credits minimum at the 3XXX level)
- 2 credits of Information Technology
- 4 credits of Natural Sciences
- 3 credits of Mathematics/Critical Thinking

All courses that are at a higher or follow-on level from the listed initial courses will meet the general education area requirements of the initial offerings. For example, if PHY-1041 is listed as meeting the science requirement, PHY-1042 will also satisfy the science requirement.

Students need to work with their advisors to develop a plan to meet the General Education elective requirements.
English Requirements

Each student will complete English Composition or an equivalent course or sequence of courses that will emphasize reading and writing effectively, as well as the completion of a research paper. Degree students may satisfy the English Composition requirements by completing one of the following as determined by placement:

1. ENG-1041, ENG-1042 and ENG-1043
2. ENG-1042 and ENG-1043
3. ENG-1060 or ENG-1061

Communication Requirements

Each student will complete ENG 2080 - Technical Communication or an equivalent course that will emphasize the principles and forms of communication in the workplace. Each student will complete coursework that emphasizes effective speaking, organization and presentation skills for effective communication.

Information Technology Requirements (CI)

Each student will be introduced to computer information technology to include Internet orientation and research, e-mail, word processing and computer software applications applicable to their field of study.

Computer Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 1010</td>
<td>Computerized Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ARC 1021</td>
<td>Architectural CAD I</td>
<td>2</td>
</tr>
<tr>
<td>BUS 1051</td>
<td>Information Processing I</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2131</td>
<td>Office Administration I</td>
<td>3</td>
</tr>
<tr>
<td>CET 1031</td>
<td>Eng and Survey Computer Apps I</td>
<td>3</td>
</tr>
<tr>
<td>CIS 1030</td>
<td>Introduction to Computer</td>
<td>3</td>
</tr>
<tr>
<td>CIS 1050</td>
<td>Introduction to Spreadsheets</td>
<td>1</td>
</tr>
<tr>
<td>CIS 1080</td>
<td>Intro to Spreadsheets & Dbs Mgmt</td>
<td>2</td>
</tr>
<tr>
<td>MAT 1420</td>
<td>Technical Mathematics</td>
<td>5</td>
</tr>
<tr>
<td>MAT 1100</td>
<td>Intro. to Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1110</td>
<td>Intermediate Algebra</td>
<td>5</td>
</tr>
<tr>
<td>MAT 1112</td>
<td>College Algebra & Trigonometry</td>
<td>5</td>
</tr>
<tr>
<td>MAT 1113</td>
<td>Pre-Calculus</td>
<td>5</td>
</tr>
<tr>
<td>MAT 1210</td>
<td>Principles of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1221</td>
<td>Finite Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1420</td>
<td>Technical Mathematics</td>
<td>5</td>
</tr>
</tbody>
</table>

Mathematics/Critical Thinking Requirements (MA)

Each student will complete the mathematical or empirical technique for problem solving in logic, critical thinking appropriate for their program of study. In addition to the regular mathematics offerings there are other courses under separate subject listings that will satisfy the logic and critical thinking component of this requirement.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC 2040</td>
<td>Construction Practices</td>
<td>3</td>
</tr>
<tr>
<td>CIS 1420</td>
<td>Computational Foundations</td>
<td>4</td>
</tr>
<tr>
<td>CPM 2010</td>
<td>Construction Estimates</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1040</td>
<td>Mathematics for Allied Health</td>
<td>2</td>
</tr>
<tr>
<td>MAT 1100</td>
<td>Intro. to Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1110</td>
<td>Intermediate Algebra</td>
<td>5</td>
</tr>
<tr>
<td>MAT 1112</td>
<td>College Algebra & Trigonometry</td>
<td>5</td>
</tr>
<tr>
<td>MAT 1113</td>
<td>Pre-Calculus</td>
<td>5</td>
</tr>
<tr>
<td>MAT 1210</td>
<td>Principles of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1221</td>
<td>Finite Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1420</td>
<td>Technical Mathematics</td>
<td>5</td>
</tr>
</tbody>
</table>
Natural Sciences Requirements

Students will be introduced to the natural sciences, either the life or physical sciences, to include a lab experience. The course of study is determined by the major or as an elective course. These science courses include BIO, CHE, ENV, PHY and SCI, as well as other course work under separate subject listings.

Life & Physical Sciences

BIO 1020 - Environmental Biology 3
BIO 1030 - Nutrition 3
BIO 1220 - Botany 4
BIO 2011 - Human Anatomy & Physiology I 4
BIO 2012 - Human Anatomy & Physiology II 4
BIO 2040 - Entomology (PS 204) 3
BIO 2120 - Elements of Microbiology 4
BIO 2320 - Zoology 4

CHE 1020 - Introduction to Chemistry 4
CHE 1031 - General Chemistry I 4
PHY 1030 - General Physics 4
PHY 1041 - Physics I 4
PHY 1042 - Physics II 4
PHY 2041 - Funds of Physics I with Calculus 4
PHY 2042 - Funds of Physics II with Calculus 4

Arts and Humanities Electives (AH)

Each associate degree student will be exposed to the methods of inquiry and major concepts in the Arts or Humanities. Courses at the associate level will be in survey-type courses to expose students to a broad array of concepts and to enhance reading, writing and communication skills. Courses at the upper level will meet program and curriculum expectations for student learning and understanding.

The following courses may be used to satisfy the Arts and Humanities elective requirement.

BUS 2250 - Business Ethics 3
BUS 3410 - Business Ethics* 3
ENG 1070 - Effective Speaking* 3
ENG 1310 - Intro Literature 3
ENG 2030 – News & Newspapers 3
ENG 2070 - Grant Writing 3
ENG 2101 - Introduction to Creative Writing 3
ENG 2320 - Themes in American Literature* 3
ENG 2550 - Science Fiction Literature 3
ENG 3490 - Crime and Punishment* 3
FRE 1111 - French I* 3
HUM 2010 - Educational Inquiry 3
HUM 2020 - Bioethics* 3
HUM 2030 - Folklore 3
HUM 2040 - The Holocaust* 3
HUM 2050 - Women’s Spirituality 3
HUM 2060 - Cyberethics* 3
HUM 2070 - Vampire in Literature* 3
HUM 2110 – Vietnam in Literature & Film 3
HUM 2710 – Special Topics in Humanities* 3
HUM 3050 - Theories of Science and Technology 3
HUM 3070 - Vampire in Literature--Upper Level* 3
ITA 1011 - Italian I 3
PHI 1010 - Introduction to Philosophy* 3
PHI 1030 - Introduction to Logic* 3
PHI 1040 - Introduction to Ethics* 3
PHI 2010 - Comparative Religion* 3
PHI 2060 – Business Ethics 3
SPA 1011 - Spanish I* 3
THA 2060 - Women in Film 3
THA 2070 - Comedy in Film* 3

* Courses marked with an asterisk (*) and bolded are offered regularly at Vermont Tech.
Social Sciences Electives (SS)

Each student will be exposed to an understanding of human behavior, personality, politics, economics and/or the social context of human interaction in broad survey-type courses designed to enhance reading, writing and communication skills within the context of the social science course.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANT 1010</td>
<td>Cultural Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2440</td>
<td>Introduction to Business Law*</td>
<td>3</td>
</tr>
<tr>
<td>BUS 2450</td>
<td>Business Law</td>
<td>3</td>
</tr>
<tr>
<td>CIS 3185</td>
<td>Social Issues in Information Tech*</td>
<td>3</td>
</tr>
<tr>
<td>CRJ 1010</td>
<td>Introduction to Criminal Justice</td>
<td>3</td>
</tr>
<tr>
<td>ECO 1010</td>
<td>Economics & Society</td>
<td>3</td>
</tr>
<tr>
<td>ECO 2020</td>
<td>Macroeconomics*</td>
<td>3</td>
</tr>
<tr>
<td>ECO 2030</td>
<td>Microeconomics*</td>
<td>3</td>
</tr>
<tr>
<td>ENG 2030</td>
<td>News & Newspapers</td>
<td>3</td>
</tr>
<tr>
<td>ENV 1110</td>
<td>Introduction to Environmental Problems</td>
<td>3</td>
</tr>
<tr>
<td>ENV 3050</td>
<td>Issues in Environmental Studies*</td>
<td>3</td>
</tr>
<tr>
<td>GEO 1010</td>
<td>World Geography*</td>
<td>3</td>
</tr>
<tr>
<td>GEO 1020</td>
<td>Physical Geography</td>
<td>4</td>
</tr>
<tr>
<td>GEO 1030</td>
<td>Intro to Plan & Zone</td>
<td>3</td>
</tr>
<tr>
<td>GEO 1040</td>
<td>Maps & Map Reading</td>
<td>3</td>
</tr>
<tr>
<td>GEO 1050</td>
<td>Geography and Economic Dev.</td>
<td>3</td>
</tr>
<tr>
<td>GEO 1060</td>
<td>Geography: Modern Overview</td>
<td>3</td>
</tr>
<tr>
<td>GEO 2010</td>
<td>Connecticut River Valley</td>
<td>3</td>
</tr>
<tr>
<td>GEO 2030</td>
<td>Rural Land Planning</td>
<td>3</td>
</tr>
<tr>
<td>GEO 2060</td>
<td>Environmental Problems in Geog.</td>
<td>3</td>
</tr>
<tr>
<td>GEO 2070</td>
<td>North America</td>
<td>3</td>
</tr>
<tr>
<td>GEO 2090</td>
<td>Africa</td>
<td>3</td>
</tr>
<tr>
<td>GEO 2150</td>
<td>Cultural Geography</td>
<td>3</td>
</tr>
<tr>
<td>GEO 2160</td>
<td>Travel and Tourism</td>
<td>3</td>
</tr>
<tr>
<td>GEO 2910</td>
<td>Independent Study</td>
<td>1</td>
</tr>
<tr>
<td>HIS 1011</td>
<td>Western Civilization I</td>
<td>3</td>
</tr>
<tr>
<td>HIS 1012</td>
<td>Western Civilization II*</td>
<td>3</td>
</tr>
<tr>
<td>HIS 1020</td>
<td>Comparative Civilizations</td>
<td>3</td>
</tr>
<tr>
<td>HIS 1111</td>
<td>World History*</td>
<td>3</td>
</tr>
<tr>
<td>HIS 1112</td>
<td>World History II</td>
<td>3</td>
</tr>
<tr>
<td>HIS 1120</td>
<td>Modern World History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 1211</td>
<td>American History I*</td>
<td>3</td>
</tr>
<tr>
<td>HIS 1212</td>
<td>American History II*</td>
<td>3</td>
</tr>
<tr>
<td>HIS 1220</td>
<td>Native American Histories & Cultures</td>
<td>3</td>
</tr>
<tr>
<td>HIS 1230</td>
<td>History of America to 1763</td>
<td>3</td>
</tr>
<tr>
<td>HIS 1240</td>
<td>Colonial America & Amer. Revolution</td>
<td>3</td>
</tr>
<tr>
<td>HIS 1260</td>
<td>Info Tech, Past, Present and Future*</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2070</td>
<td>Vermont History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2110</td>
<td>U.S. History, 1945 to Present</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2120</td>
<td>Social Reform in America</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2130</td>
<td>African American History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2140</td>
<td>The Civil War</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2150</td>
<td>History of U.S. in the Sixties*</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2210</td>
<td>Women in US History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2220</td>
<td>The Wild, Wild West</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2230</td>
<td>Modern Russian History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2240</td>
<td>Survey of Eurasia</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2250</td>
<td>Modern Middle Eastern History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2330</td>
<td>Traditional Asia</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2340</td>
<td>Modern Chinese History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2350</td>
<td>Modern Pacific Asian History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2410</td>
<td>Latin American History and Culture</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2420</td>
<td>Modern Latin American History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2430</td>
<td>Survey of Africa</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2440</td>
<td>African Civilization</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2450</td>
<td>Modern African History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2510</td>
<td>Historian at Work</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2520</td>
<td>Intro to Genealogy</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2530</td>
<td>Women in History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2710</td>
<td>Special Topics in History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2720</td>
<td>Special Topics in Vermont History</td>
<td>3</td>
</tr>
<tr>
<td>HIS 2730</td>
<td>S.T.-Political Correct/Truth/20th Century</td>
<td>3</td>
</tr>
<tr>
<td>HIS 3165</td>
<td>VT History*</td>
<td>3</td>
</tr>
<tr>
<td>HUM 2040</td>
<td>The Holocaust*</td>
<td>3</td>
</tr>
<tr>
<td>HUM 2060</td>
<td>Cyberethics*</td>
<td>3</td>
</tr>
<tr>
<td>PHI 2060</td>
<td>Business Ethics</td>
<td>3</td>
</tr>
<tr>
<td>POS 1010</td>
<td>Intro to Political Science</td>
<td>3</td>
</tr>
<tr>
<td>POS 1020</td>
<td>Intro to American Politics & Gov*</td>
<td>3</td>
</tr>
<tr>
<td>POS 1030</td>
<td>Comparative Government</td>
<td>3</td>
</tr>
<tr>
<td>POS 1040</td>
<td>African-American History/Politics</td>
<td>3</td>
</tr>
<tr>
<td>POS 1050</td>
<td>The Constitution</td>
<td>3</td>
</tr>
<tr>
<td>POS 1060</td>
<td>Law & the Individual</td>
<td>3</td>
</tr>
<tr>
<td>POS 2010</td>
<td>Observ Leg Process</td>
<td>0</td>
</tr>
<tr>
<td>POS 2020</td>
<td>Family Law</td>
<td>3</td>
</tr>
</tbody>
</table>

(more electives next page)
Social Sciences Electives (SS)
Continued

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS 2030</td>
<td>UN & World Politics</td>
<td>3</td>
</tr>
<tr>
<td>POS 2040</td>
<td>International Relations</td>
<td>3</td>
</tr>
<tr>
<td>POS 2050</td>
<td>International Economics & Politics</td>
<td>3</td>
</tr>
<tr>
<td>POS 2110</td>
<td>State & Local Government</td>
<td>3</td>
</tr>
<tr>
<td>POS 2120</td>
<td>Consumer Law</td>
<td>3</td>
</tr>
<tr>
<td>POS 2701</td>
<td>Environmental Politics</td>
<td>3</td>
</tr>
<tr>
<td>PSY 1010</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY 1020</td>
<td>Child Abuse & Neglect</td>
<td>3</td>
</tr>
<tr>
<td>PSY 1030</td>
<td>Psychology of Consciousness</td>
<td>3</td>
</tr>
<tr>
<td>PSY 1040</td>
<td>Human Interaction</td>
<td>3</td>
</tr>
<tr>
<td>PSY 1050</td>
<td>Human Growth & Development*</td>
<td>3</td>
</tr>
<tr>
<td>PSY 1110</td>
<td>Observe, Record, Report</td>
<td>3</td>
</tr>
<tr>
<td>PSY 1121</td>
<td>Intro Behavior Analysis</td>
<td>3</td>
</tr>
<tr>
<td>SSC 2020</td>
<td>Experience Russia</td>
<td>1</td>
</tr>
<tr>
<td>SSC 2040</td>
<td>Experience Brazil</td>
<td>1</td>
</tr>
<tr>
<td>SSC 2050</td>
<td>Experience China</td>
<td>1</td>
</tr>
<tr>
<td>PSY 2310</td>
<td>Adolescent Development</td>
<td>3</td>
</tr>
<tr>
<td>SSC 2010</td>
<td>Science, Technology, and Society</td>
<td>3</td>
</tr>
<tr>
<td>SSC 2030</td>
<td>Energy and Society</td>
<td>3</td>
</tr>
<tr>
<td>XXX X710</td>
<td>Special Topics in Social Science*</td>
<td>3</td>
</tr>
</tbody>
</table>

* Courses marked with an asterisk (*) and bolded are offered regularly at Vermont Tech.

NOTE: In choosing electives, students should consult with their program department chairperson or advisor to determine which electives are appropriate for their program and to be certain that the electives chosen are consistent with Vermont Technical College’s graduation requirements. For details on any of these courses, see the “Course Descriptions” section of the catalog.
Course Descriptions

Key to Course Abbreviations

ACC Accounting
AER Aeronautical
AGR Agricultural and Animal Science
ARC Architectural Engineering Technology
ATT Automotive Technology
BIO Biological Sciences
BUS Business
CET Civil & Environmental Engineering Technology
CHE Chemistry
CIS Computer Science
CPM Construction Practice & Management
DHY Dental Hygiene
DSL Diesel Power Technology
ECO Economics
EDU Education
ELT Electrical Engineering Technology
ELM Electromechanical Engineering Technology
ENG English
ENV Environmental Studies

ESL English for Speakers of Other Languages
GEO Geography
HIS History
HUM Humanities
XXX Individual Research, Independent Study and Interim Special Topics
INT Interdisciplinary
LAH Landscape Development and Ornamental Horticulture
MAT Mathematics
MEC Mechanical Engineering Technology
NUR Nursing
PHI Philosophy
PHY Physics
POS Political Science
PSY Psychology
RSP Respiratory Therapy
SSC Social Science
TCT Telecommunication Technology
TEC Technical Education
THA Theatre Arts
VET Veterinary Technology

NOTE: Students without the prerequisites for any course must obtain the written permission of the instructor and the department chair.

Accounting (ACC)

ACC-1010 Computerized Accounting (3) spring

This course demonstrates how various accounting systems are implemented and integrated on a microcomputer. Students will become proficient with applications in general ledger, receivables, payables, inventory, fixed assets, and the preparation of financial statements. 1 hour of lecture, 4 hours of laboratory per week. Prerequisite: ACC-2121 or ACC-1020.
ACC-1020 Survey of Accounting (3) fall/spring
Students acquire basic familiarity with processing accounting transactions for service and merchandise businesses, including cash receipts and accounts payable; cash payments and accounts payable; and payroll. Students prepare and analyze financial statements, and develop an understanding of inventory valuation, depreciation of plant assets, and generally accepted accounting principles. 3 hours of lecture per week. Prerequisite: None.

ACC-2121 Financial Accounting (4) fall
This course covers the basics of generally accepted accounting principles, terminology and accounting cycle. Students will learn to prepare financial statements and become familiar with special journals, receivables, payables, control accounts, inventory, depreciation, deferrals, accruals and payroll. 3 hours of lecture, 2 hours of laboratory per week. Prerequisite: None.

ACC-2122 Managerial Accounting (4) spring
This course is a continuation of Financial Accounting and covers accounting concepts of partnerships and corporations. Topics also include bonds, investments, financial statement analysis and cash-flow analysis. Students will gain entry-level skills which permit employment in keeping accurate financial records for a small business. 4 hours of lecture per week. Prerequisite: ACC-2121.

ACC-2201 Intermediate Accounting I (4) as required
This course provides an in-depth examination of accounting theory for assets, liabilities, and stockholders' equity, essential for the understanding and analysis of financial statements. The accounting cycle is reviewed and other topics include temporary investments, receivables, inventories, and fixed and intangible assets. 4 hours of lecture per week. Prerequisite: ACC-2121.

ACC-2202 Intermediate Accounting II (4) as required
This is a continuation of Intermediate Accounting I. Emphasis is placed on problem solving and topics covered include long-term investments, liabilities, matching revenue and expenses for the determination of net income, income taxes, non-operational revenue, and financial statement analysis. 4 hours of lecture per week. Prerequisite: ACC-2201.

ACC-2210 Cost Accounting (4) as required
This course examines in-depth concepts used in recording, classifying, and reporting cost data. Students will understand costs as related to management in the planning and control process. Topics include budgeting, job order and job process. 4 hours of lecture per week. Prerequisite: ACC-2122.
Aeronautical (AER)

AER-1010 Non-destructive Testing (7) fall
Students will discuss the methods used for non-destructive testing used in the 1960's and 1970's compared with modern testing methods. Historically, magnetic particle inspection, ultra sound, ultra sonic, dye penetrant, fluorescent penetrant, and x-ray were used. However, with the changes in design materials, ferrous metals are no longer used on today's aircraft. Modern techniques include: back scattering radar, improved x-ray and virtual reality (VR) used with eddy current inspection. The time and quality of inspections is reduced and qualifications of personnel to perform these inspections. Borescoping has taken on a new meaning in the aviation field, as inspection of an engine or other components on the aircraft can be done without removal and disassembly. Findings are recorded on a VHS tape or DVD for trend analysis. The course will normally be completed as part of pre-program coursework.

AER-1020 Avionics Past and Present (6) spring
An examination of the changes in the avionics field from the early 1950's to present as technologies have changed; from vacuum tube, to transistor, to integrated computer chips. This is the most changed field in aviation industry. Emphasis will be placed on the migration of navigation equipment from Variable Omni Range (VOR) to Area Navigation (RNAV) to Long Range Navigation (LORAN) and Global Positioning Systems (GPS). Students will also review similar changes in radio communications. Attention will be given to the impact of modern avionics, with their lighter configuration and greater accuracy and reliability, which has changed the number and types of radios used aboard aircraft as well as improved the useful load that each aircraft is allowed to carry. The course blends theory and practice through many hands-on applications.

AER-1030 Advanced Airframes and Powerplants (6) summer
Students will discuss advanced methods used in Aircraft maintenance taught during the last third of the FAA curriculum. Including: hydraulics and pneumatics, landing gear systems, aircraft atmosphere and climate control systems, wiring practices, fuel, ice and control, fire detection, protection and extinguishing systems, instrument, pitot static, position and warning communications/navigation systems, aircraft inspections; turbine engine overhaul, removal, installation, operation and maintenance; and reciprocating engine overhaul, removal, installation, operation and maintenance. This class would cover these procedures in depth with hands-on training in most areas.

AER-2021 Spacecraft Systems I (3) fall
Students will become familiar with defining space mission parameters and refining requirements for minimum cost and risk. Topics to be discussed include orbit and constellation design, mission geometry, launch vehicle selection, design of the spacecraft, payload, ground segment, and operations. This first-semester course will cover the more general aspects, and those not requiring calculus. Students will use the Satellite Tool Kit software for analysis and design aid. 3 hours of lecture per week. Prerequisite: Aeronautical Program, permission of instructor. Co-requisites: MAT-1420.
AER-2022 Spacecraft Systems II (3)
Spring

Students will become familiar with defining space mission parameters and refining requirements for minimum cost and risk. Topics to be discussed include orbit and constellation design, mission geometry, launch vehicle selection, design of the spacecraft, payload, ground segment, and operations. This second-semester course will cover the more specific aspects, as well as those requiring calculus. Students will use the Satellite Tool Kit software for analysis and design aid. 3 hours of lecture per week. Prerequisite: Aeronautical Program, permission of instructor. Prerequisite: AER-2021. Co-requisite: PHY-1041.

AER-2120 Materials for Aerospace Applications (3)
Fall

Students will become familiar with materials that are employed in aerospace applications. Topics to be discussed include materials and processes for aerospace structures, advanced alloys, fiber composites, metal matrix composites, bonding, riveting, and other interconnection technologies, aerospace materials testing and inspection methods. Prerequisite: Aeronautical Program, permission of instructor.

AER-2720 Satellite Project (1)
Spring

Students will select, design and plan a pico-satellite project along the lines of the National Space Grant Student Satellite Program, such as a Cubesat. Four or five students will work together in a team and the best project will be submitted for NASA funding and launching. If funding is received, a team of BSELM and BSCET Senior Projects students will build the satellite and software. Prerequisite: MAT-1520, AER-2120. Co-requisites: PHY-1042.

Agriculture and Animal Science (AGR)

AGR-1011 Agricultural Techniques I (2)
Fall

This course is designed to facilitate a successful transition to college and focuses on four primary areas: orientation to the College and academic programs; development of basic agricultural skills; interpersonal development; and an introduction to agriculture-related careers. In an informal laboratory, students will be exposed to the practical skills necessary to succeed within the agricultural curriculum under the supervision of experienced farm staff. Students will be introduced to student rights & responsibilities, how to interact with faculty and classmates, Agri-careers, time management, and how to enhance academic performance. 1 hour of lecture, 2 hours of laboratory per week, plus one week of milking experience. Prerequisite: None.

AGR-1012 Agricultural Techniques II (1)
Spring

This is a continuation of AG 1011 in which the student must select an area for independent study through a work experience project. Students work closely with the farm staff to complete their selected topics during the semester. 2 hours of laboratory per week, plus one week of required milking experience. Prerequisite: AG 1011 or permission of the instructor.
AGR-1030 Animal Reproduction and Genetics (3)
Students are expected to develop knowledge of the anatomy and physiology of the male and female reproductive systems and the estrous cycle in farm animals. The course includes an understanding of simple Mendelian and quantitative genetic principles. Students are expected to develop sound breeding and selection systems. 3 hours of lecture per week. Prerequisite: None.

AGR-1050 Livestock Production (3)
A study and discussion of livestock applicable to the New England dairy and agricultural industry. Emphasis is devoted to dairy cattle, but beef cattle, sheep, and horses are also covered. Breeding, feeding, and management topics are presented in a technical and practical manner. 3 hours lecture per week. Prerequisite: None.

AGR-2011 Dairy Herd Management I (3)
This course concentrates on the profitable care and management of a dairy herd. Detailed practices essential to operating a modern, efficient dairy herd are presented in lecture. These principles are reinforced in laboratory experiences that utilize the College herd. Various field trips are planned to complement what is taught in lecture and lab. Active student participation is expected. Dairy Herd Management I deals with record keeping and the development and implementation of breeding and feeding programs that will accomplish a desired set of goals. Students also learn how to manage the reproductive performance of the herd as well as how to raise quality herd replacements. 2 hours of lecture, 2 hours of laboratory per week. Prerequisite: Sophomore standing or permission of instructor.

AGR-2012 Dairy Herd Management II (3)
A continuation of Dairy Herd Management I, this course emphasizes proper milking management and herd health programs. Subtopics include sire selection, culling, milking management, and herdsmanship. As a final project, students conduct a mock cattle sale. 2 hours of lecture, 2 hours of laboratory per week. Prerequisite: AGR-2012 or permission of the instructor.

AGR-2020 Farm Buildings (2)
Farmstead planning and basic structural concepts for farm buildings are emphasized. Subtopics include construction materials and methods, environmental issues, waste management, feeding systems, and housing systems. 2 hours of lecture per week. Prerequisite: None.

AGR-2030 Animal Nutrition (4)
This is a course in the fundamentals of livestock feeding. It includes the study of the nutritive characteristics of forages, grains, and grain products as feeds for different farm animals. Students will be asked to develop livestock rations and feeding programs based on the available feedstuffs and the needs for maintenance, growth, and production. Typical applications may center around the College's dairy herd and/or the student's home farm. 3 hours of lecture, 2 hours of laboratory per week. Prerequisite: None.
AGR-2040 Forage Production (3)
Emphasis is given to the production of forage and pasture crops for New England dairy farms. Topics include the selection of adapted crops, varieties, seed mixtures, and soil sites along with soil preparation, seeding methods, and crop management. Harvesting for best digestible energy and protein is stressed as is the growing of alfalfa and corn. 2 hours lecture, 2 hours of laboratory per week. Prerequisite: None.

AGR-2050 Large Animal Diseases (3)
This course includes discussion of those diseases which are of major importance in the husbandry of food animals, with special emphasis on herd and flock health preventive medicine. To further students’ understanding of diseases and disease prevention, basic pathologic changes and immunologic processes involved in the occurrence and prevention of disease are described. 3 hours of lecture per week. Prerequisite: None.

AGR-2060 Beef Production (3)
An introductory course in beef production that addresses topics including marketing and price-making forces, the biological cycle of the beef cow, beef genetics and the application of genetic principles to beef herd breeding programs. Reproductive management of cows, bulls, and heifers, principles of nutrition, and animal health issues will also be discussed. 1 hour of lecture, 2 hours of lab per week. Prerequisite: None.

AGR-2110 Sheep Production (2)
This is an introductory course in sheep production including a presentation of intensive and extensive production models, life cycle management of the ewe, flock health and parasite control, ram health and fertility, and management of reproduction. Methods for measuring and monitoring flock performance will also be presented. 1 hour of lecture, 2 hours of lab per week. Prerequisite: None.

AGR-2720 Issues and Trends in Agriculture (2)
This course emphasizes new ideas in agricultural techniques and management and some of the primary issues impacting animal agriculture. Students investigate new and/or alternative production methods with emphasis on sustainable agriculture. Field trips and guest speakers provide students the opportunity to evaluate societal concerns about various aspects of modern production agriculture. 2 hours of lecture per week. Prerequisite: Sophomore standing.

Architectural/Building Engineering Technology (ARC)

ARC-1000 Freshmen Seminar (1)
This course provides a forum for first-year students to learn about the program and about the architecture profession, building construction industry, and related engineering disciplines. Skills that will assist the student in having a successful experience at the College are also discussed. The course makes use of guest speakers from within the College community and from the building industry. 1 hour of seminar per week. Prerequisite: None.
ARC-1010 Architectural Woodframe Construction (3) fall

This course covers basic instruction in architectural construction graphics and the use of board drafting equipment, as well as an introduction to the materials of light woodframe construction. A set of drawings for a small residence is developed, in keeping with contemporary office practices. 6 hours of studio per week. Prerequisite: None.

ARC-1021 Architectural CAD I (2) fall

This course covers basic instruction in computer-aided drafting and design as related to architectural and building engineering technology. The students will receive instruction using AutoCAD. 3 hours of studio per week. Prerequisite: /Co-requisite: ARC-1010 and CIS-1050 or permission of the instructor.

ARC-1210 Construction Materials and Methods (6) spring

A comprehensive study of common construction materials, methods of fabrication and erection employed in building construction. Sources, methods of manufacture, and uses of materials are covered. There are two different studio sessions with this course: the materials studio sessions familiarize students with physical characteristics and uses of materials, performance of standard tests, and preparation of technical reports; the design/drafting studio involves the detailing and drafting of construction assemblies. Hand drafting and CAD are both used in this lab. 4 hours of lecture, 3 hours of testing studio and 3 hours of detailing studio per week. Prerequisite: ARC-1010, ARC-1021.

ARC-1220 Architectural History (3) spring

Through photo slide lectures and small group seminars, the student is introduced to architectural design philosophies and construction systems that have developed over the ages. Influences such as social, political, religious, economic, and technological advances are traced from the first significant works of humans 5,000 years ago through the present day. A major concentration is worldwide development since the 18th century, particularly in America, and its significance to today’s society is emphasized. Small group seminars provide an opportunity for the student to join in follow-up discussions of lectures, with the objective of developing visual perception and knowledge of aesthetic principles from a view of architectural history. 2 hours of lecture, 1 hour of recitation per week. Prerequisite: None.

ARC-2022 Architectural CAD II (3) spring

This course covers advanced instruction in computer-aided drafting and design for architecture. There will be combined lecture and studio sessions in the use of productivity modules to improve two dimensional plan/detail construction drawings, three-dimensional building models, and presentation rendering. 6 hours of studio per week. Prerequisite: ARC-1021, 2051.
ARC-2031 Environmental Systems I (3) fall
This course covers the natural environmental influences upon building design and construction as well as the principal internal necessities for human habitation including sanitation, heating and ventilating, and mechanical requirements in small buildings. The laboratory session reinforces the lectures by teaching the student how to design plumbing and heating systems for a small residential scale building. 2 hours of lecture, 3 hours of studio per week. Co-requisite: PHY-1043.

ARC-2032 Environmental Systems II (3) spring
This is a continuation of Environmental Systems I. Broad-scale aspects of mechanical, electrical, and sanitary systems are investigated and studied as applied to larger buildings and groups of buildings. Other topics covered include electrical and lighting design, the impact that building codes and other regulations have on buildings, and current environmental topics affecting society today. 2 hours of lecture, 3 hours of studio per week. Prerequisite: ARC-2031.

ARC-2040 Construction Practices (3) fall
This course is a combination of several distinct areas in the building construction industry. One half of the course is comprised of an introduction to fundamental surveying principles and methods, including distance measurement, angular measurement, and elevational differences. Instrument practice and care for theodolites, electronic distance measurement instruments, and total station equipment are introduced. Other topics studied are terminology, computations, developing site plans, and construction layout. Another part of the course covers topics in construction estimates and records including estimating (both conventional and computer), take-offs, and pricing for both residential and commercial construction. A third part of the course covers construction management principles including scheduling practices, contracts, general conditions, and specifications. 2 hours of lecture, 3 hours of studio per week. Prerequisite: ARC-1210.

ARC-2051 Architectural Design I (3) fall
Individual design projects are developed by the student from conception to presentation under faculty supervision. Problem solving and the process of design are taught and reinforced throughout the semester. Graphic techniques for design drawings are a major emphasis in this course. Building types covered range from small artifacts, through the house, to a small public building. Throughout the course, graphic and oral communication of goals, methods, and solutions are emphasized. Some projects are presented by the student before a jury of architecture faculty and distinguished practitioners. 6 hours of studio per week. Prerequisites: ARC-1010, 1210, 1220. Co-requisite: ARC-2031.
ARC-2052 Architectural Design II (3)

The course project is located in a Vermont town. Input in the planning and design process is received from proposed users of the building and local officials. Recently covered towns include Waterbury, Randolph, Montpelier, and Northfield. Existing conditions and constraints are explored in-depth as a prelude to design. Students then respond with the selection of needed building types and appropriate sites. The architectural program is then developed, and appropriate design responses generated. Throughout the course, oral and graphic communication and presentation skills are developed as appropriate. Students work in teams on these projects to simulate "real world" working dynamics. The course terminates with the presentation of projects before a jury of architecture faculty and architectural practitioners. 6 hours of studio per week. Prerequisite: ARC-2051.

ARC-2720 Architecture Seminar (0)

This lecture/seminar course for second-year students concentrates on developing knowledge and skills used in the workplace and throughout the student's life. Topics include job skills, continuing education, office practices, project management, and "soft" skills. 1 hour of lecture per week. Prerequisite: Sophomore Standing.

ARC-3010 Design Systems Integration (3)

This intent of this course is to concentrate the student's design thinking toward the areas used in Architectural Engineering, particularly in the integration of environmental and structural systems into the building design. The course complements the Architectural Engineering curriculum by introducing students to the design of sustainable low-energy systems in small buildings, and by providing tools for analysis in the schematic phase. 6 hours of studio per week. Prerequisite: ARC-2051, 2032 (or permission of the instructor), CET-2120.

ARC-3020 Structural Analysis (3)

This course covers the analysis of statically determinate and indeterminate structures, building on the foundation that most students obtain in a course on statics. Topics include static determinacy and stability, reactions, member forces and moments in beams, frames, and trusses (2-D and 3-D) through both determinate and indeterminate methods, as well as approximate methods. Deflection analysis is also covered. Computer applications for analysis are used, and matrix methods of analysis are introduced. Dynamics structural analysis is also introduced. Prerequisite: MAT-1520, CET-2040.
ARC-3030 Steel Structures Design (3) spring
This course covers the design of steel structures, including typical structural elements such as tension members, beams, columns, base plates, connections, open web joists, and deck systems. Designs are based on the AISC Manual for Steel Construction using the load and resistance factor design methodology. Issues such as economics of construction and constructibility are also addressed. 3 hours of lecture per week. Prerequisite: CET-2120, ARC-3110, ARC-3020.

ARC-3040 Electrical/Lighting Systems (3) spring
This course familiarizes students with the various electrical and lighting systems commonly found in modern buildings. Systems include lighting, power, communications, and emerging systems. The course emphasizes design practices, safety/Code issues, and coordination with other design professionals and building trades. 3 hours of lecture per week. Prerequisite: ARC-2032, ELT-3020, ARC-3110.

ARC-3050 Fundamentals of Fluids and Thermodynamics (4) spring
Students study the basic concepts and practical applications of fluid mechanics and thermodynamics. Topics include fluid properties and measurement, energy conservation, pipe and duct flow, pumps and fans, first and second laws of thermodynamics, refrigeration, psychrometrics, basic thermodynamic processes, and HVAC. 3 hours lecture, 3 hours studio per week. Prerequisite: MAT-1520, PHY-1043.

ARC-3110 Codes and Loads (3) fall
This course provides students with an understanding of which codes and specifications govern the determination of design structural, heating/cooling, and lighting/electrical loads for buildings and other structures. It introduces students to the determination of applicable code provisions, the application of those code provisions, and also to methods for calculating and estimating loads that are not specifically addressed, or are insufficiently addressed, in code books, manuals, and elsewhere (e.g., special studies, rules of thumb, past experience, expert elicitation). The course provides the basic knowledge and skills for the determination and use of such loads in courses such and steel structures design, concrete structures design, HVAC, plumbing, electrical/lighting, and Senior Project. Lectures introduce topics and methods of application; the laboratory emphasizes the application of codes and methods on varying structure types. 2 hour of lecture, 2 hours of lab per week. Prerequisite: MAT-1520, CET-2120, and ARC-2032, or approved previous work related to structural, architectural, electrical, or HVAC systems.

ARC-4010 Concrete Structures Design (3) fall
This course covers the design of typical statically determinate and indeterminate concrete structures. The course will make extensive use of the American Concrete Institute Building Code Requirements and will consider concrete and steel material properties, design approximations, design of concrete linear members (beam and columns), one-way and two-way slabs, and foundation footings and walls. 3 hours of lecture per week. Prerequisite: CET-2120, ARC-3110, ARC-3020.
ARC-4020 Architectural Engineering Management (3) fall
This course covers many of the business, management, professional, and ethical subjects that architectural and other engineers may face during their careers. These include legal issues, business organizational frameworks, personnel and diversity issues, business planning and decision making, marketing, scheduling, professional ethics, project and design cost issues (including engineering economics), information management, technical presentation skills, and others. The course helps students develop communications skills and the ability to analyze and create management-related reports using various methods and tools, especially in a team setting on team projects. 3 hours lecture per week. Prerequisite: ARC-2040.

ARC-4030 HVAC Systems (4) fall
This course addresses the engineering aspects of heating, ventilating, and air conditioner systems design. There is a focus on mechanical systems for commercial buildings that includes psychrometrics, basic HVAC calculations, design condition determination, load estimating, duct and pipe sizing, HVAC systems, and HVAC equipment selection. Students are required to perform system design on a commercial building in preparation for Senior Project. Introductions to energy conservation, comfort condition, indoor air quality, and mechanical codes are included. ASHRAE standards and international codes are used as a basis in these areas. 3 hours lecture, 3 hours of studio per week. Prerequisite: ARC-2032, ARC-3050, ARC-3110.

ARC-4040 Plumbing Systems (3) spring
Students in this course learn the basic practices and techniques for the design of plumbing systems in buildings. International Plumbing Code commentary is the basis of course materials. Emphasis is placed on the design and calculations for sizing sanitary waste and vent systems; domestic hot and cold water systems; water heaters; storm drainage systems; and fire sprinkler systems, as well as fixture selection. Each topic includes discussions on materials and methods of construction and installation; code requirements; computer applications; specifications and drafting symbols and standards. 2 hours of lecture, 3 hours of studio per week. Prerequisite: ARC-2032, 3050.

ARC-4050 FE Exam Survey (1) fall
This course provides students and practicing professionals with applications for, and review of, engineering, math, and science concepts to prepare for the Fundamentals of Engineering (FE) examination administered by most states as a first step toward professional licensure as a Professional Engineer (PE). The course focuses on topics that students have been exposed to previously, and on topics that are generally easier to understand and apply with limited explanation of background material. FE exam topics that are covered significantly in Senior-level ARC courses (e.g., ethics and engineering economics) receive limited coverage. Strategies for studying for and taking the FE and similar examinations are covered, as is the application of engineering judgement in general. Applications are primarily in SI units to match the FE examination. 3 hours lecture/lab per week for 8 weeks. Senior standing in any Vermont Tech Bachelor's Degree program in engineering technology, or by permission.
ARC-4720 Senior Project (4)
This course is a capstone course that integrates knowledge and skills developed through other coursework and life experience. Students prepare drawings, design documentation, and presentations for a commercial project based on preliminary and incomplete architectural plans (the ASHRAE national student competition building is typically selected) or other information. Students work on schematic drawings for electrical/lighting, mechanical, and structural systems, and then focus on one technical specialty for the development of a final design; in some cases, a semester-long final design in one subject area is done. 2 hours of lecture, 6 hours of studio per week. Prerequisite: ARC-3013, 3030, 3040, 3110, 4010, 4020, 4030.

Automotive Technology (ATT)

ATT-1000 Automotive Seminar (1)
This course helps students to gain basic skills for success in the Vermont Tech Automotive Technology program through library workshops, lab report writing workshops, and an introduction to Vermont Tech support services. The course also serves to introduce students to the automotive field and includes wide-ranging discussion on topics such as: career opportunities; graduate stories; Vermont auto history; repair order writing; and flat rate vs. straight time pay scales. 1 hour of seminar per week. Prerequisite: None.

ATT-1010 Automotive Suspension and Brakes (4)
This course is designed to give the student a thorough understanding of the theory, construction, and design of those mechanical devices utilized in tires, wheels and bearings, steering and suspension systems, and hydraulic braking systems. Emphasis is placed on the geometry of links and levers, the physics of friction and hydraulics, vehicle braking and suspension requirements, vehicle handling and dynamics, and the diagnosis of brake and suspension problems. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: None.

ATT-1020 Engine Diagnostics & Repair (4)
This course provides a comprehensive study of the theory, construction, design, and repair of the internal combustion engine. Topics discussed include engine classification, power and torque development, engine power-efficiency tests, engine performance parameters, and mechanical design and failure analysis. The mathematical solution of performance characteristics is demonstrated. Alternative engines and fuels are also discussed. The lab reinforces the lecture by providing engine performance diagnostic procedures and mechanical repair and overhaul procedures. System problem diagnosis and component failure analysis are continually stressed. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: None.
ATT-1030 Manual Drivetrains (3)
This course provides a comprehensive study of the theory, construction, and design of
the mechanical devices used in the modern automotive drivetrain. Major topics studied
are clutches, manual transmissions and transaxles, driveshafts and axles, universal and
CV joints, differentials, and transfer cases. System problem diagnosis and unit repair
techniques are covered in the lectures and practiced in the labs. 2 hours of lecture, 3
hours of laboratory per week. Prerequisite: None.

ATT-1040 Automotive Electrical Systems (4)
This course is intended to give the student a thorough understanding of automotive
electrical systems and to teach diagnostic and troubleshooting skills. Topics include the
operation and testing of storage batteries, starting systems, charging systems, ignition
systems, and basic accessory systems. The student will become familiar with various
types of test equipment, diagnostic charts, and vehicle wiring schematics. 3 hours of
lecture, 3 hours of laboratory per week. Prerequisite: ATT-1120.

ATT-1120 General Electronics for Automotive (4)
This course will introduce the student to general electrical and electronic principles,
theory and components. Topics include Ohm's Law, circuit analysis, basic circuits,
diodes, transistors, relays and solenoids. The lab will use electrical test equipment to
analyze and troubleshoot basic electrical circuits including warning systems, electrical
accessories, and battery starting and charging systems. Prerequisite: None.

ATT-2010 Engine Performance (4)
This course gives the student an understanding of fuel delivery systems as they relate to
the internal combustion engine. Topics include engine air/fuel requirements, gasoline
fuel injection systems, diesel fuel injection systems, and vehicle emissions and emission
controls. The analysis of fuel-related problems, diagnosis of component failures, and
verification of repairs are included. 3 hours of lecture, 3 hours of laboratory per week.
Prerequisite: PHY-1030.

ATT-2020 Body Electronic Systems (4)
This course is designed to give the student an understanding of commonly used chassis
systems. Major topics studied include heating, ventilation, and air conditioning,
instrument panels, air bags, and anti-lock brakes. The student is familiarized with
system operation, diagnostic techniques, system failure analysis, and repair. The lab
offers experience in diagnosis and repair of these systems as well as more practice in
using electrical diagnostic techniques. 3 hour of lecture, 3 hours of laboratory per week.
Prerequisite: ATT-1010, 1040; PHY-1030.
ATT-2030 Advanced Engine Performance (4)
This course is intended to give the student a thorough understanding of the electronic controls and devices used on the modern automobile powertrain. Topics to be covered include the theory, design, operation, and application of various domestic and foreign electronic control systems. Analysis of system problems, diagnosis of system failures, component and system test procedures, and causes of premature component failure are studied in detail. 4 hours of lecture, 3 hours of laboratory per week. Prerequisite: ATT-1120.

ATT-2040 Automatic Transmissions & Axles (4)
In this course students learn the principles of construction and operation of various types of automatic transmissions and transaxles currently being used. Specific topics to be addressed include planetary gear drive systems, hydrodynamic drives, hydraulic control systems, principles of electronically-controlled transmissions, and problem diagnosis and component failure analysis. 3 hours of lecture, 3 hours of laboratory per week. Co-requisite: ATT-2030.

ATT-2810 Summer Internship (1)
A ten-week summer cooperative education experience.

Biological Sciences (BIO)

BIO-1030 Nutrition (3)
The course focus is to provide sound, relevant background knowledge in the science of human nutrition and to translate the scientific principles of nutrition into applicable concepts of patient-centered nursing. The course offers opportunity for the student to identify dietary modifications relating to the developmental stage of the patient and to his/her self-care abilities. It implements the philosophy and objectives of the program by identifying the role of adequate nutrition in maintaining the health of the individual throughout the life-span. 3 hours lecture per week. Prerequisites: None.

BIO-1220 Botany (4)
This course provides students with an understanding of the fundamentals of plant growth and development. Higher plant structure, metabolism, growth regulators, and mineral nutrition are emphasized. Students also become acquainted with the diversity of plants and plant-like organisms through study of bacteria, viruses, algae, fungi, mosses, and lower vascular plants. 3 hours of lecture, 3 hours of laboratory per week. Prerequisites: None.
BIO-2011 Human Anatomy & Physiology I (4) fall

This course is an introduction to the structure and function of the human body. It emphasizes the properties of cells, tissues, and organ systems and their relationships in health and disease. Topics include general body organization and function, cellular physiology and histology, and the anatomy and physiology of each organ system. Laboratory work parallels lecture topics and includes microscopy, study of human anatomical models, dissection of appropriate laboratory specimens, and physiologic experimentation. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: None.

BIO-2012 Human Anatomy & Physiology II (4) spring/winter

A continuation of BIO-2011, this portion of the course includes the study of the structure and function of the endocrine system, circulatory system, immune system, respiratory system, digestive system, excretory system and reproductive system. Other topics covered include acid/base balance and electrolyte balance. Laboratory work parallels lecture topics and includes microscopy, dissection of appropriate laboratory specimens and human anatomical models. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: BIO-2011.

BIO-2030 Plant Pathology (3) spring

Students explore the organisms and environmental factors that cause plant diseases. The biology of fungi, bacteria, and viruses including their life histories is studied extensively. A systematic approach to discovery and identification of plant disease is examined. Students learn to recognize disease symptoms. All methods of control are covered, but more emphasis is placed on bio-rational techniques. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: BIO-2040 or permission.

BIO-2040 Entomology (3) fall

Entomology examines the biology and control of insect and other related invertebrate pests that attack ornamental plants. Students study insect morphology, anatomy, life processes, and ecology. Special emphasis is placed on insect identification and life histories. Students explore control strategies as part of an integrated approach to pest management. The most effective, least toxic, and sustainable methods of insect control are highlighted. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: Sophomore standing or permission.

BIO-2120 Elements of Microbiology (4) fall/spring/summer

This course offers the student an opportunity to examine organisms that are too small to be seen with the naked eye. This is a comprehensive study of the basic principles of microbiology. A brief survey of the history of the science is given. Emphasis is placed on understanding the variety and differences of microbes and their relationship to humans. Virtual laboratory study and in-lab demonstrations complement the lecture. Successful completion of the lab exercises is a partial requirement for the course. 3 hours of lecture, 3 hours of laboratory per week. Recommended prerequisite: BIO-2012.
BIO-2320 Zoology (4) fall

A laboratory course designed to acquaint the student with the fundamental concepts of animal biology, including molecular genetics and inheritance, evolution and biological systems, and ecology, with an emphasis on vertebrates. Previous successful completion of courses in biology and chemistry is highly desirable. 3 hours of lecture, 3 hours of laboratory per week. Co-requisite: CHE-1020 or 1031 or instructor's permission.

Business (BUS)

BUS-1010 Introduction to Business (3) fall

The focus of this course is to survey the interconnected disciplines of management, marketing, finance, and information technology, and to facilitate college success strategies such as notetaking, time management, test taking, and study skills. Students will begin to develop effective oral and written communication, critical thinking, problem solving, and interpersonal skills necessary to succeed in a business environment. 3 hours of lecture per week. Prerequisites: None.

BUS-1050 Professional Development (1) fall

Students will develop skills and attitudes essential for a professional business career. Personal presence includes self-image, motivation, time management and communications. Personal wellness includes nutrition, fitness, stress management and human relations. Image awareness includes poise, body language, grooming and attire. Business behavior includes introductions, dining etiquette, tipping and travel. 2 hours of laboratory per week. Prerequisite: None.

BUS-1051 Information Processing I (3) fall

Students will develop skills in a variety of business competencies; including “touch” keyboarding at 45 words per minute, basic functions of word processing using Microsoft Word, and preparation of business correspondence. Students also learn to use e-mail and the Internet. 1 hour of lecture, 4 hours of laboratory per week. Prerequisite: None.

BUS-1052 Information Processing II (3) spring

Students will develop advanced skills in a variety of business competencies; including “touch” keyboarding at 60 words per minute, and advanced functions of word processing and desktop publishing using Microsoft Word and Microsoft Publisher. 1 hour of lecture, 4 hours of laboratory per week. Prerequisite: BUS-1051 or equivalent skills.
BUS-2020 Principles of Management (3) fall
Students will understand styles and roles of effective management in today’s workplace. Both classic and modern topics will be included. Emphasis will be placed on the anatomy of organizations, the evolution of management theories through today’s Total Quality concepts. Traditional topics include motivation, group dynamics and organizational culture. Emerging topics include self-managed teams, coping with stress, and diversity in the workplace. 3 hours of lecture per week. Prerequisite: None.

BUS-2131 Office Administration I (3) fall
This course sequence (combined with BU 2132) serves as an intensive capstone review and integration of skills and concepts presented in the business curriculum. The course examines the ever-changing role of today’s business office and its administrative professionals. Students are expected to demonstrate skills and knowledge gained in prerequisite coursework, with emphasis on computer proficiency and professional business writing. Students will demonstrate professional-level expertise in Microsoft Office software. 2 hours of lecture, 2 hours of laboratory per week. Prerequisite: BUS-1052, ENG-1061 or equivalent, or permission.

BUS-2132 Office Administration II (3) spring
This course sequence is a continuation of BU 2131. Students are expected to demonstrate skills and knowledge gained in prerequisite coursework, with emphasis on computer proficiency, professional business writing, organizational communication, principles of management, and basic accounting. Students will demonstrate professional level expertise in Microsoft Office software. 2 hours of lecture, 2 hours of laboratory per week. Prerequisite: BUS-2031 or permission.

BUS-2150 Office Information Systems (3) spring
This course will examine the impact of technology and information systems on the evolution of today’s office. Topics include the history of information technology; hardware components and uses; software applications, networks and data communications, systems concepts and applications. Emphasis is placed on the integration of people, equipment, procedures and environments. 3 hours of lecture per week. Prerequisite: None.

BUS-2210 Small Business Management (3) fall/spring
This course explores the practical aspects of organizing and managing a small business. The goal of the course is to equip students with the knowledge necessary to make informed business decisions. Students will examine how to analyze a business and improve its management. The course covers the basic concepts of accounting, finance, cash management, business law, government regulations, taxes and marketing. 3 hours of lecture per week. Prerequisite: None.

BUS-2230 Principles of Marketing (3) fall/spring
This course examines the role of marketing as it relates to manufacturing, wholesale, retail and service businesses. Emphasis is placed on a study of the marketing mix of product, place, pricing and promotion. Students will learn marketing strategies well suited to small business operation. 3 hours of lecture per week. Prerequisite: None.
BUS-2260 **Principles of Financial Management** (3) fall
This course is designed to build on the knowledge from basic accounting. Students apply tools learned in this course to develop a conceptual and analytical understanding of financial management. The emphasis is on learning decision-making techniques. 3 hours of lecture per week. Prerequisite: ACC-1020 or 2121.

BUS-2270 **Organizational Communications** (3) fall
This course offers a clear, hands-on approach to learning the role, the process, and the skills of interpersonal, group, and public communications in professional/organizational settings. The distinctive feature and objective of the course is to understand the role of people in the organizational communication process both individually and in work groups. Specific topics address the psychology of face-to-face communications, teamwork and group dynamics, effective listening, oral presentations, formal meetings, and parliamentary procedure. 2 hours of lecture, 2 hours of lab per week. Recommended prior learning: ENG-1061 or equivalent.

BUS-2410 **Human Resources Management** (3) spring
This course emphasizes selecting, training and evaluating personnel; wages, benefits and bargaining units; motivation, morale and human relations; and personnel problems in the workplace. 3 hours of lecture per week. Prerequisite: None.

BUS-2411 **E-Commerce I** (3) as required
This course is an introductory broad overview of e-commerce which provides an understanding of evolving Internet technologies as they are used in a business setting. The course covers: retrieval of marketing and other research information from the Internet; basic skills for navigating the Internet and foundational concepts for doing business on the web. 3 hours of lecture per week. Prerequisite: None.

BUS-2412 **E-Commerce II** (4) as required
This course focuses on in-depth business strategy implications of providing e-business solutions. It is primarily a case-based class where students learn to develop and use managerial and strategic reasoning skills within an e-business sphere of influence. The course will cover: a quick review of e-business and its implications; analysis of typical legacy business situations and making strategic recommendations for the implementation of e-business solutions. 4 hours of lecture per week. Prerequisite: BUS-2411.

BUS-2440 **Introduction to Business Law** (3) fall/spring
This course is designed to familiarize students with the law as it relates to business. Following the Uniform Commercial Code, such topics as contracts, negotiable instruments, agency bailment, real property and insurance are covered. 3 hours of lecture per week. Prerequisite: None.
BUS-2720 Business Seminar (2)
Spring
This course is designed to assist students in developing the attitudes and skills essential for career success. The focus is in three areas: Job Search includes researching the job market, writing a resume and cover letter, and preparing for job interviews; Career Opportunities and Challenges includes diversity, ethics, men and women as colleagues, and career success strategies; Senior Project includes a two-part demonstration of essential skills and knowledge learned in the Business degree program. The project consists of an individual written section and a team oral presentation. 2 hours of lecture per week. Prerequisite: Sophomore standing.

BUS-3150 Production & Operations Management (3)
As required
This course develops administrative skills needed to manage efficiently the several elements of production—materials, facilities and staffing. Quantitative models (Management Science) are used to optimize the efficient use of resources. 3 hours of lecture. Prerequisite: MAT-2021 and junior standing, or permission.

BUS-3250 Organizational Behavior and Management (3)
As required
This course helps students develop an understanding of how individuals and groups act in organizations, and how organizations manage their environments. Prerequisite: BUS-2020.

BUS 3260 Investments and Portfolio Management (3)
Spring
This course examines investment in stocks, bonds, governments, warrants, options, and collectibles. Topics include investment setting, securities valuation and analysis, security markets and regulations, and portfolio constraints. 3 hours of lecture. Prerequisites: ACC-2121 or ACC-1020 and BUS-2260.

BUS-3410 Business Ethics (3)
Fall
This course is designed to develop an awareness of ethical issues in organizations and reflect upon the values underlying policy making and operational decisions. In this process students will need to reflect upon their personal values and the sources of ethical standards in today's culture. The ultimate goal of the course is to underscore ethical concerns as a basic and articulated part of organizational culture. Students will be required to write a formal research paper on a topic related to business ethics. 3 hours of lecture. Prerequisite: ENG-1061 or equivalent.
BUS-4310 Business Information Architecture (3) fall

Students will learn and apply theory, process, design, and development to create effective, user-centered oral, written, printed, and electronic information. Components of the course include human interactions in the workplace; the convergence of communication and computing systems; and the unintended consequences of the Information Age, such as information glut, information trash, and information hype. Students will write and design copy for business applications including letters, memos, email messages, oral presentations, PowerPoint slides, and newsletters. 3 hours of lecture. Prerequisite: BUS-2020.

BUS-4510 Business Management Through Information Technology (3) as required

Students examine the role of information technology in the conduct of business and the managerial uses of information at the operational, tactical, and strategic levels of decision-making. Topics focus on the use of IT to facilitate business change in policy and practice. The course includes discussion of the importance of communications to today's business organization and the role of the non-IT professional in systems development. Prerequisite: BUS-2020.

BUS-4530 Technical Project Management (3) as required

Designed for the project manager who interacts with all levels of management while satisfying the customers' needs, this course covers planning, scheduling and controlling projects. Emphasis will be placed on issues like leadership, motivation, team-building and conflict resolution. CPM and PERT will be covered in detail. Real case studies will be used extensively to illustrate theories and concepts covered in the lectures. Prerequisite: BUS-2020.

BUS-4560 Principles of Leadership (3) as required

A study of how leaders in a high-performing business organization create and sustain business values, set directions, establish performance expectations, focus on customers, and set up systems that promote performance excellence. Principles of quality leadership, customer service, performance management, planning, process management and teamwork are emphasized. Prerequisite: BUS-2020, BUS-2410.

BUS-4730 Senior Project (3) spring

This is a capstone course that integrates knowledge and skills developed through other coursework and life experience. The course will focus on special topics in business and a specific business issue/problem. Students will work in cross-functional teams to select a project which involves solving a common business problem. Students will research the topic extensively and prepare a team oral presentation of their solution. Presentations will be judged by business and industry professionals. Students will also prepare written documentation as part of their project. 3 hours of lecture per week. Prerequisite: BUS-3150.
Civil & Environmental Engineering Technology (CET)

CET-1000 Civil Seminar (1) fall
This course will focus on the skills required by students for success in the Civil and Environmental Engineering Technology program. The course may have guest speakers and field trips to construction projects and public facilities that will give the student a picture of the variety of work done by civil engineers and the job opportunities in the field. 1 hour of seminar per week.

CET-1011 Surveying I (3) fall
The course introduces fundamental surveying principles and methods, including the measuring of distances, angles, difference in elevation, and instruction and practice in the care and use of equipment. Areas covered are bearings, cross sections and profiles, note keeping, computations and field practice relating to traverses, an introduction to geodetic surveying, the basics of construction surveying, and the adjustment of surveying instruments. 2D and 3D coordinate transformation is introduced. 2 hours of lecture, 3 hours laboratory per week. Co-requisite: MAT-1420 or MAT-1111.

CET-1020 Engineering Materials (4) spring
This course studies the materials used in construction, including aggregates, cements, Portland cement concrete, timber, asphalts, bituminous concrete mixes, steel, and masonry. Sources, methods of manufacture and handling, and standard tests are covered. Portland cement concrete and bituminous concrete mixes are designed and tested. Laboratory work includes performance of standard tests and the preparation of technical reports of the tests. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: None.

CET-1031 Engineering and Surveying Computer Applications I (3) fall
This course provides the student with a working knowledge of the use of computers for civil engineering. No prior computer training is required. The course is designed to introduce the computer and its operating system in conjunction with laboratory assignments in the use of CAD (AutoCAD). The fundamentals of CAD operation and application are presented through the use of civil engineering topics including site, structural, and environmental drawings. Major graphic subjects include creating and editing CAD primitive and complex entities, dimensioning, drawing construction, layout and output. Spreadsheets are also introduced with applications appropriate to civil engineering including calculations, quantities, estimates, and graphs. 6 hours of laboratory per week. Prerequisite: None.
CET-1032 Engineering and Surveying
Computer Applications II (3)

This course is a continuation of CET-1031 intended to provide proficiency in the creation and understanding of working drawings related to civil engineering. Covered AutoCAD topics include advanced AutoCAD entity manipulation, customization, and programming. The student is introduced to AutoCAD Land Development Desktop, a civil/survey software package used for site mapping, terrain modeling, and road and utility design. In addition, related technologies such as Geographic Information Systems (GIS), their application, and data sources are discussed. 1 hour of lecture, 6 hours laboratory per week. Prerequisite: CET-1031.

CET-2012 Surveying II (4)

A continuation of Surveying I, this course gives additional and more detailed information in route location and design, construction surveying, and advanced surveying topics. Specialized equipment such as theodolites, electronic distance measuring instruments, and state-of-the-art total stations and data collectors are used in the field labs. Least squares adjustments are introduced. Computer applications to surveying are an integral portion of the course. 2 hours of lecture, 6 hours of laboratory per week. Prerequisite: CET-1011, CET-1032, MAT-1420 or MAT-1113.

CET-2020 Hydraulics and Drainage (3)

The course includes an introduction to the fundamental concepts of fluids, fluids at rest, measuring devices, pressure diagrams, buoyancy, and steady flow. Calculations with computer applications are made for head losses, open channel flow, hydrology, and runoff. Pump characteristics and water distribution systems are also studied. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: MAT-1520, PHY-1041 or PHY-1022.

CET-2030 Environmental Engineering & Science (3)

This course emphasizes quantitative analysis of environmental problems and introduces the student to engineering methods for treatment and prevention of water, soil, and air pollution. Fundamental concepts of chemistry, microbiology, ecology, and statistics which are critical to environmental analysis and engineering design are covered. The laboratory includes both field and indoor testing of water quality as well as fieldtrips to environmental facilities. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: CHE-1031, MAT-1420 or MAT-1113, PHY-1041 or PHY-1022.

CET-2040 Statics and Strength of Materials (4)

Statics involves the study of vector forces, resultants and moments, and their effect on beams, columns, frames, and trusses. Strength of materials includes the study of material properties, tension, compression, shear and bending stresses, and the methods of determining centroids and moment of inertia. Laboratory work includes calculation of force and stress analysis, in addition to material testing. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: MAT-1520, PHY-1041 or PHY-1022.
CET-2050 Civil and Environmental Design (4) spring

This course is designed to give the student experience with realistic civil engineering technology problems that require the use of knowledge and skills obtained in previous courses taken at Vermont Tech. Under faculty supervision, students are assigned design projects that could include site development plans, buildings and parking structures, bridges, water supply and treatment facilities, roads and highways. The students develop graphic presentations, preliminary designs, calculations, and working drawings. The final phase of some projects may include estimating and construction scheduling. 2 hours lecture, 6 hours laboratory per week. Prerequisite: CET-2012, 2020, 2030, 2040. Co-requisites: CET-2060, 2110, 2120.

CET-2060 Construction Estimates and Records (3) spring

A study of construction planning, equipment, and methods is incorporated with the study of construction contracts, specifications, and working drawings. Various types of plans and specifications are used as a basis for determining the construction methods and materials to be used on a project. These plans are also used for preparing cost estimates and cpm schedules. Earned value analysis and project accounting is introduced. Computers are used throughout the course for problem solving, estimating, and record keeping. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: CET-1011, CET-1032.

CET-2110 Mechanics of Soils (3) spring

A study of the basic principles and applications of soil mechanics as used in design and construction is covered. This course introduces a knowledge of soil, its formation, actions, and uses. Included are studies of index properties, soil classification, exploration and sampling, compaction, and soil strength. Problems relating to these items are presented and solved. Laboratory testing is done in conjunction with the classroom studies to give a more complete understanding of the material. Each student is required to prepare an individual technical report of each test performed. 2 hours of lecture, 3 hours laboratory per week. Prerequisite: CET-2040.

CET-2120 Structural Design (4) spring

The course is a study of the design of structural systems using wood, reinforced concrete, masonry, and steel. The design of various structural members and systems, such as tension members, beams, columns, connections, walls, and foundations is presented in accordance with relevant design codes. Laboratory work consists of the application of building and design codes to the design of structural systems and generation of detail drawings. 3 hours of lecture, 3 hours laboratory per week. Prerequisite: CET-2040.
CET-3010 Evidence and Procedures for Boundary Line Location (3) spring

The purpose of this course is to familiarize land surveying students with the importance of locating the original boundary line between two or more tracts of land, the evidence that needs to be collected, and the procedures for this collection. This course is intended for students that have achieved an Associates degree in Civil and Environmental Engineering Technology and wish to pursue a career in the field of land surveying. The course is also intended for people working in the field of land surveying and wish to obtain a license as a Professional Land Surveyor in the State of Vermont. 3 hours of lecture. Permission: Required for all individuals. Prerequisite: None. Co-requisites: CET-2012.

Chemistry (CHE)

CHE-1020 Introduction to Chemistry (4) fall

Descriptive chemistry, atomic and molecular structure, chemical reactions, and the fundamentals of chemistry are studied. Laboratory work complements lectures and develops basic laboratory techniques. Previous successful completion of a course in chemistry is highly desirable. 3 hours of lecture, 2 hours of laboratory per week. Prerequisites: None

CHE-1031 General Chemistry I (4) fall/spring

This course is intended for engineering students and consists of the fundamentals of general and physical chemistry. Laboratory work is designed to amplify the lectures, provide an introduction to laboratory techniques, and introduce some methods of analysis currently used in industry. 3 hours of lecture, 3 hours of laboratory per week.

Computer Science (CIS)

CIS-1030 Introduction to Computer (3) as required

Students will become familiar with the Windows operating system, the applications that comprise the Microsoft Office software suite (word processing, spreadsheet, database, and presentation graphics), and communication software. 3 hours of lecture/lab per week. Prerequisite: None.

CIS-1050 Introduction to Spreadsheets (1) fall/spring

This course introduces the student to the Microsoft operating system, e-mail, Internet, and the use of a spreadsheet. Topics include the commands necessary to build a spreadsheet and make graphs. Prerequisite: None.
CIS-1080 Introduction to Spreadsheets and Database Management (2) fall/spring
This course introduces students to the use of email, MAPLE database functions, and the Internet, as well as to the use of a spreadsheet and database. Spreadsheet topics include all functions necessary to build a spreadsheet and create graphs. Database topics include the fundamentals of computer database design and management. 2 hours of lab per week. Prerequisite: None.

CIS 1151 Website Design (3) fall
This course includes the introduction of web pages for commercial web sites: use of and design with HyperText Markup Language, text and graphics; applying appropriate design, color, and art; size and place graphics, including imagemap, in a web page; creation of advanced tables, including nested tables; creation of forms that contain advanced input types and attributes, text areas, and advanced lists; use of a validation tool to debug an HTML document. 2 hours of lecture, 3 hours of laboratory per week. Prerequisites: None

CIS-1152 Advanced Website Development (4) spring
Students learn intermediate skills and techniques used in Web page development. Topics include applying sophisticated formatting to text; creating documents that automatically display another page and that contain interactive JAVAScripts; creation of and work with frames documents; examination of document styles and recommendations on improvements; HTML document creation/conversion tools; using XML to manage content; an introduction to database theory; use of basic SQL programming; use of Cold Fusion to reformat text and databases and dynamic web pages; use of style sheets; 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: CIS-1151.

CIS 1160 Fundamentals of Programming in C (1) spring
Fundamentals of programming in C is a course intended to be a gentle introduction to writing programs in a windows environment. It will be taught using the C programming language, but will focus primarily on concepts such as variable declarations, if statements, and loops that are common to most popular programming languages. Students will also learn how to manage files and directories, run programs, edit text files, and use a computer. This course is open to all majors who would like to take an introductory programming course. 3 hours of lab per week. Prerequisite: None.

CIS 1420 Computational Foundations (4) spring
This course presents the structure and application of binary numbers, groups of binary digits that form codes, and common data types of information technology. Topics start with arithmetic operations, modulo arithmetic, binary, octal, and hexadecimal codes. Further attention is given to the relational operators and how they operate on various data types. It then reviews logic from the basic constructs, propositions, statement simplification, logical equivalence, logical conditions, and developing logical conditions based upon descriptive text. It concludes with an introductory level survey of mathematical structures, such as algorithms, sets, relations and relational algebra, combinations and permutations, and elementary graph concepts, from the perspective on information technology and computer science that are fundamental to the discipline. 3 hours lecture, 2 hours lab. Prerequisite: None.
CIS-2025 "C" Programming (4) fall/spring/on-line

This course teaches students to write programs using the C language. All fundamental features of C are covered, including arrays, functions, pointers, file I/O, string manipulation, and preprocessor directives. In addition, this course will emphasize good software design techniques, programming style, and documentation. No prior programming experience is required. This course is offered in both classroom and on-line versions. Sufficient internet skills and the permission of the instructor are required to take the course on-line. 3 hours of lecture, 3 hours of lab per week. Prerequisite: None.

CIS-2151 Computer Networks I (4) fall/spring

This course introduces the student to network protocols. The course covers physical, data link, network, transport, and application layer protocols. The TCP/IP protocol suite is discussed in detail. IPX/SPX is also discussed. Topics include ethernet and token ring networks, connectionless protocols, connection-oriented protocols, and application protocols such as SMTP, NNTP, and HTTP. Students learn about both hardware and software troubleshooting tools, security issues, and current topics such as IPv6. The way network software is written, both on the server side and the client side, is also covered. 3 hours lecture, 3 hours of laboratory per week. Prerequisite: CIS-2025 or CIS-2271.

CIS-2230 System Administration (4) spring

In this course the student explores the basics of system management. The course provides the student with enough theory to understand how operating systems work and to interpret the output of various management tools. It also covers practical issues in system administration including process, memory, and file system monitoring and performance tuning. Some topics in computer security are also discussed. Unix and Windows NT/2000 are the specific systems currently studied. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: CIS-2025.

CIS-2240 Security and Administration (4) fall

Students are introduced to the concepts behind server administration and proper maintenance. Topics include: security risks and their implications; prevention of security loopholes; SSL encryption and digital authorization technology; server installation, operation, maintenance, and proper record keeping. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: CIS-2025 or CIS-2271.
CIS-2250 Client/Server Databases (4) spring
Solving business problems using spreadsheets and database management. Students work on microcomputers using popular, commercially available software packages. Practical exercises using spreadsheets and database management software are emphasized. The course presents innovative, practical techniques for handling the complexity of client/server systems and for testing them effectively for both performance and functionality. Also covered are distributed processing and data, event driven systems; predicting performance at full load; GUI interfaces; and testing; the basics of the Relational Database Management Systems technology; and modern extensions into object orientation and multimedia databases. Introduces keystone software packages such as Microsoft Access, Filemaker Pro, Microsoft Query, Ingres, and SQL (Structured Query Language). 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: CIS-2025 or CIS-2271 or permission of the instructor.

CIS-2260 Object-Oriented Programming (3) fall
This course introduces students to the concepts of programming with abstract data types and object-oriented programming. It uses C++ to cover classes, inheritance, and polymorphism. The course also builds on the prerequisites to provide students with more advanced exposure to software design, implementation, debugging, and documentation. 3 hours of lecture per week. Prerequisites: CIS-2025, CIS-2271.

CIS-2271 JAVA Programming (4) fall
This course will introduce the student to basic concepts of JAVA and Object Oriented Programming (OOP). The course begins with basic concepts of OOP. These include classes, objects, inheritance, polymorphism, and object oriented design. The course will then cover the language features of JAVA. The topics in this section are: program structure, statement and field types, operators, expressions, and control structures. The course then returns to OOP features of JAVA, focusing on object data types, strings, methods, classes and constructors. The final section addresses graphical user interface (GUI). The topics are: applets, GUI components (e.g. buttons), event processing and frames. 3 hours of lecture, 2 hours of lab per week.

CIS-2280 Perl Programming (2) spring
This course continues the student's training in programming by introducing the student to the use of the scripting language Perl. Students are introduced to the Linux operating system. The basic concepts of programming are reviewed using Perl to demonstrate those concepts. Concepts unique to Perl, such as regular expression handling and hashes, are introduced. The emphasis in the course is on using Perl as a tool to get things done rather than only as a vehicle to explain how to program. Examples and assignments are drawn from topics related to system administration, web programming, and application programming. 2 hours lecture per week. Prerequisite: CIS-2025, CIS-2271 or permission of the instructor.
CIS-2720 Computer Engineering Projects (3) spring
This course provides students the opportunity to integrate the topics presented throughout the curriculum as well as to explore additional specific topics that are relevant to the current state of the field. Recent topics have included HTML authoring, JAVA, CGI scripting, Windows programming, X11/Qt programming, and databases. At the discretion of the instructor, students may work on a semester long project, do library research, give an oral presentation, write a significant program or build significant electrical hardware. The precise content and nature of this course varies from year to year, depending on current industry needs. 2 hours lecture, 3 hours laboratory per week. Prerequisite: ELT-1080, ELT-2020, CIS-2151, CIS-2260. Co-requisite: CIS-2230.

CIS-3010 Database Systems (4) spring
In this course students study a method for designing relational databases, the use of SQL to access data stored in a relational database, and the use a commercial database management system to implement a relational database system. Students are required to implement a real-world example relational database as a project. Additional topics that may be discussed as time and class interest permit include: VBA, DAO and ActiveX, ODBC, and JDBC. Prerequisite: CIS-2230 or equivalent.

CIS-3030 Programming Languages (3) fall
This course introduces the student to a variety of important or current languages. The idea is to give the student more exposure and experience with programming by showing the student how various languages can be used to solve various problems. The intent is to cover languages of practical and theoretical importance. Some software engineering techniques are also introduced. 3 hours of lecture per week. Co-requisite: CIS-3050.

CIS-3050 Algorithms and Data Structures (3) fall
This course focuses primarily on the implementation of various important algorithms and data structures. It contains some theory but the theory content is minimized in favor of a more rigorous treatment of implementation techniques. The course covers classic topics such as lists, trees, hash tables, sorting, and string matching. It also covers selected other topics such as encryption, data compression, and image processing. The language used is C++ with an emphasis on the C++ Standard Template Library. 3 hours of lecture per week. Prerequisite: CIS-2260 or permission of the instructor.

CIS 3070 Data Structures (3) as required
This course continues student programming and design skills by mixing the study of data structures and object-oriented design through the study of collections, linear collections, ordered lists, stacks, queues using both linear and linked structures. The course examines non-linear structures such as trees, m-way trees, and graphs, and implementing an NP hard problem such as traveling sales or knapsack problems. 3 hours of lecture per week. Prerequisite: CIS-2260 or permission of the instructor.
CIS 3080 Issues in Information Technology (3) as required
This course is an in-depth study of the uses-of and issues related-to computers and information systems in society. Topics explore the benefits and professional impact of continuing career preparation, career progression, outreach to the community, ethical development and ethical behavior. Controversies and alternative points of view are evaluated on issues such as professional ethics and professional responsibility. Students research and write extensively on course topics. Prerequisite: Junior standing or permission.

CIS 3090 Algorithms: A Procedural Approach (3) fall
This course introduces students who already know how to program to issues and practices in the major applications and systems programming areas of files, sorting, searching, simple numerical analysis, simple data structures, and hash tables. Students will design, write and debug all aspects of the projects in this class. 3 hours of lecture per week. Prerequisites: CIS-2025, CIS-2042, CIS-2262 or CIS-2271.

CIS-3152 Networks II (4) spring
This is a second course in network theory and practice with an emphasis on network programming. Topics include TCP/IP protocol behavior (including some coverage of IPv6), client/server programming, higher level protocols such as SMTP or HTTP, MIME, and XML (especially as it relates to network protocols). In addition, RPC and another distributed system (CORBA or DCOM or Web services) is covered and, time allowing, network directory protocols such as LDAP are also mentioned. The programming is primarily done using C or C++. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: CIS-2151, CIS-3050.

CIS-3170 History of the Theory of Computation (3) spring
This history of computer and early calculators will be examined. Students will learn the principles of early computational devices and investigate how the concepts utilized in these devices are implemented in modern computers. Particular attention is focused on Boolean logic, Frege formula language and Turing machines. Implications of Shannon's Law and Moore's Law will be studied. Also offered on-line. Prerequisite: Junior standing. (General Education: SS. For non-computer students).

CIS 3185 Social Issues in Information Technology (3) as required
This course is an in-depth study of the uses of and issues related to computers and information systems in society. Topics covered explore the benefits and social impact of computer technology with respect to social, political, and legal issues. Controversies and alternative points of view are evaluated on issues such as: privacy vs. access to information, freedom of speech vs. control of content on the Internet, reliability and safety, the changing nature of work, and market-based versus regulatory solutions. Students research and write extensively on course topics. (General education: SS - For noncomputer students). Prerequisites: Junior standing.
CIS-4020 Advanced Operating Systems (4) fall
In this course students study the internal workings of modern operating systems. As part of this course students write a small operating system and/or modify the Linux kernel. Topics include device drivers, multiprocessing, virtual memory management, and file systems. Distributed operating systems and real time operating systems are also discussed. 3 hours of lecture and 3 hours of laboratory per week. Prerequisite: CIS-2230 or equivalent, CIS-3050, CIS-3152.

CIS-4030 GUI Programming (3) fall/on-line
Modern Graphical User Interface (GUI) design and implementation methods are studied. The course uses JAVA as the base language. Industry standard libraries, such as Swing and Open GL are used for programming coursework. This course is taught in the on-line mode only, and the course is currently delivered through the Black-board on-line course delivery system. Students are assigned programming problems frequently and regularly. fall (on-line only) Prerequisite: CIS-3030 or permission of the instructor.

CIS-4040 Computer Security (3) spring
This course focuses on security issues associated with computers and computer networks. The course starts by covering cryptographic topics such as symmetric and public key systems, digital signatures, secure hashes, cryptographic random number generation, and message authentication codes. Network security topics are also covered including secure protocols (SSH, SSL, IPsec), network attack methods, network authentication protocols (for example, Kerberos), and firewalls. Finally the course covers host security matters such as building secure software, auditing, and intrusion detection. 3 hours of lecture per week. Prerequisite: CIS-2230 or equivalent, CIS-3050, CIS-3152.

CIS-4050 Compiler Design (3) spring
This course investigates how languages are implemented and gives the student enough knowledge to build specialized “mini languages” for niche applications. Students will use compiler generation tools such as lex and yacc, and will create some hand-built components. Although some theory is presented, the emphasis is on implementation (programming) rather than theorem proving. Most programming is done in C, but other languages (C++, JAVA) are also used. 3 hours of lecture per week. Prerequisite: CIS-3030, CIS-3050.

CIS-4120 Systems Analysis and Design (3) spring
This course addresses the methodology used in gathering data, analyzing data, and determining user requirements for information processing using advanced systems analysis techniques and the associated techniques used in designing solutions that can then be programmed as application software for use on computer-based systems. 3 hours of lecture. Prerequisite: Junior standing or permission.
CIS-4130 Introduction to Software Engineering (3) as required
This course continues beyond good programming techniques to design modeling
techniques for process, event, object and data modeling and utilizes an underlying
framework call UML (Unified Modeling Language) 3 hours of lecture, 2 hours of lab
per week. Prerequisites: CIS-3070 or 3090.

CIS-4150 Software Engineering (3) fall
This course investigates how languages are implemented and gives the student enough
knowledge to build specialized Úmini languagesÚ for niche applications. Students will
use compiler generation tools such as lex and yacc, and will create some hand-built
components. Although some theory is presented, the emphasis is on implementation
(programming) rather than theorem proving. Most programming is done in C, but other
languages (C++, JAVA) are also used. 3 hours of lecture per week. Prerequisite: CIS-
3030, CIS-3050.

CIS-4711 Project I (2) fall
This course is a largely self-directed senior project in which students demonstrate their
mastery of the subjects covered in their program. 1 hour of lecture, 3 hours of laboratory
per week. Prerequisite: Senior standing in a computer program.

CIS-4712 Project II (3) spring
Completion and final presentation of the senior project begun in the fall. Regular
progress reports are required and a formal presentation is required at the end of the
academic year. This presentation occurs in front of students, departmental faculty, and
invited guests (including potential employers). 1 hour of lecture, 6 hours of laboratory
per week. Prerequisite: CIS-4711 or permission.
Construction Practice & Management (CPM)

CPM-1010 Electrical/Mechanical Systems (3) spring

The student is introduced to the major environmental systems in a building: plumbing, heating, cooling, and ventilation; and electrical and illumination. Also included is an introduction to the influences of the natural environment on the built environment and a consideration for how these affect energy use and conservation. The building codes that govern the design of the various environmental systems are studied. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: CPM-1031, 1021, or permission.

CPM-1021 Construction Graphics I (1) fall

This course prepares students to interpret working drawings for residential and light commercial construction projects by teaching them to make their own basic architectural drawings on a drafting board. Students learn to draw plans, elevations, sections and details, and to understand how they relate to each other. Informal sketching techniques are practiced and used throughout this course and others in the program. 3 hours of laboratory per week. Prerequisite: None.

CPM-1022 Construction Graphics II (1) spring

This course applies the lessons of CPM-1021 to the study and interpretation of construction specifications and drawings for residential and light commercial projects. 3 hours of laboratory per week. Prerequisite: CPM-1021.

CPM-1031 Residential Construction Systems (3) fall

Students study residential construction methods and materials for the following systems: foundations, framing, insulating, interior and exterior finish, and roofing. They learn about the CABO building code, new products, and estimating material quantities. 3 hours of lecture per week. Co-requisite: CPM-1032 or permission.

CPM-1032 Construction Lab (2) fall

Students are introduced to the basic materials and methods of commercial construction. 6 hours of lab per week. Co-requisite: CPM-1031.

CPM-1111 Commercial Construction Systems (4) spring

This course introduces students to the construction materials and installation methods used in commercial projects. Students study soils and foundation types; heavy timber frame construction; masonry, concrete and steel construction systems; and commercial roofing, insulation and cladding systems. They also learn about the BOCA building code. CPM-1111 is the same as ARC-1210 for the lecture portion. 4 hours lecture per week. Prerequisite: CPM-1031 or permission.
CPM-2010 Construction Estimates (3) fall
This course introduces the estimating principles and procedures used to determine detailed cost estimates for construction bidding purposes. Both residential and light commercial applications are addressed. Included are organizing the estimate; methods of pricing labor, materials and equipment; direct and indirect overhead costs; units of measure; computer spreadsheets; and profit. An introduction to contracts and types of bids is provided. Familiarization with computer estimating software applications is included. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: CPM-1031, CPM-1111, CPM-1022, MAT-1100, or permission.

CPM-2020 Construction Project Management (3) fall
This course introduces students to the principles of construction project management. Included are the design/construction process, contract documents, organization of the construction firm, subcontractor relationships, records and reports, cost control methods and procedures, schedule control, construction safety, and quality control. Bar chart and critical path method scheduling are covered. An introduction to design-build and construction manager contracting is included. 3 hours of lecture per week. Prerequisite: None.

CPM-2030 Elementary Theory of Structures (4) spring
This course introduces the student to the methods used in the preliminary analysis and design of building framing systems and to why certain materials and member sizes are used. An introduction to statics and strength of materials includes basic analysis of framing systems and properties of materials used in residential and commercial construction. The student is introduced to building and design codes and the study of building loads and how the building reacts to the loads. General structural system using wood, steel, concrete, and masonry elements including pre-engineered products are studied. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: MAT-1100, PHY-1030, CPM-1031, CPM-1111.

CPM-2050 Construction Management Software (1) fall
This course exposes Construction Practice and Management students to several commonly-used computer applications for construction management: advanced spreadsheets (Excel), estimating (Winest), and scheduling (Primavera Suretrak). Students will learn the software by working through tutorial-type exercises in a weekly computer lab run by an instructor. 1 hour of lecture, 2 hours of laboratory per week. Prerequisite: Sophomore standing, or permission.

CPM-2060 Field Engineering (2) fall
This course introduces students to the fundamentals of construction field engineering, survey and building layout. Students will learn the use and care of survey equipment while performing field practices such as distance measuring, building layout, profile and cross sectional leveling and traversing. Trigonometry and geometry will be used to balance angles, make distance corrections, and compute areas and volumes. 1 hour lecture, 3 hours laboratory per week. Prerequisite: MAT-1100 or equivalent.
CPM-2720 Construction Supervision (1) fall
This is an elective course for Construction Management seniors. The intent is to give these students practice supervising first-year students during their Construction Lab and managing the CPM job site. 3 hours of laboratory per week. This course is repeatable for additional credit. Prerequisite: Permission.

CPM-2730 Construction Seminar and Project (4) spring
This course ties together all the previous courses for the CPM program. The lecture portion utilizes professionals from all phases of the construction process as guest speakers. In the lab, students read and interpret the contract and specifications for a commercial project of significant scope. Through individual and group work on this project, they develop a complete estimate of cost and construction time, a project schedule, a schedule of values, a safety plan, an environmental plan, and a quality control plan. 2 hours of lecture, 6 hours of laboratory per week. Prerequisite: Sophomore standing or permission.

CPM 2810 Construction Internship (1) summer
This is a required part of the CPM curriculum and involves a ten-week summer cooperative education experience that will broaden student understanding of real world construction and management.

Dental Hygiene (DHY)

DHY-1011 Pre-clinical Dental Hygiene (4) fall
This course explores the principles of dental hygiene and provides an orientation to clinical practice and preclinical experience. 3 hours lecture and 6 hours lab per week. Prerequisite: None.

DHY-1012 Clinical Dental Hygiene I (5) spring
This course is a continuation of DHY-1011 with an early clinical experience built in. 3 hours lecture and 8 hours lab per week. Prerequisite: DHY-1011, DHY-1021.

DHY-1021 Oral Tissues I (3) fall
This course is an introduction to dental terminology and the morphology and histology of the oral tissues. 2 hours lecture and 3 hours lab per week. Prerequisite: None.

DHY-1022 Oral Tissues II and Medical Emergencies (3) spring
This is a continuation of DHY-1021 emphasizing head and neck anatomy, oral embryology, odontogenesis and medical emergencies. 2 hours lecture per week and 2 hours of lab per week. Prerequisite: DHY-1011, DHY-1021, BIO-2011.

DHY-1030 Dental Radiography (3) spring
This is the study, demonstration, and practice of fundamentals of intraoral radiographic technique. The student will learn to recognize radiographic appearance of common oral disorders. 2 hours lecture per week and 2 hours lab per week. Prerequisite: DHY-1011, DHY-1021, BIO-2011.
DHY-2010 Dental Materials (3) fall

This course is designed to emphasize the clinical and theoretical concepts of dental materials and their clinical application. This course blends two hours of lecture with two hours of laboratory time to provide the students with adequate opportunity to manipulate materials introduced during the didactic portion of the course. Knowledge in the use of dental materials will allow the dental hygienist to better promote and explain the necessary preventative and restorative needs of the patient. 2 hours of lecture, 2 hours of lab. Prerequisite: DHY-1012, DHY-1022, DHY-1030, BIO-2012.

DHY-2020 General Pathology and Clinical Dental Pharmacology (3) fall

This course is an introduction to clinical pathology and the pharmacological management of the treatment of dental patients. The student will learn to integrate diseases commonly found in dental hygiene practice with the pharmacologic agents used in management of those diseases. 3 hours lecture per week. Prerequisite: DHY-1012, DHY-1022, DHY-1030, BIO-2012.

DHY-2030 Periodontics (3) fall

This is the study of the morphologic and functional aspects of the supporting structures. The student will learn to recognize diseases of the periodontium and will learn therapeutic measures for the treatment of diseases of the periodontium. 3 hours lecture per week. Prerequisite: DHY-1012, DHY-1022, DHY-1030, BIO-2012.

DHY-2210 Community Oral Health (3) spring

This is an introduction to the concepts of community oral health with emphasis on advanced research designs, community health issues, and the function of public health programs. Additionally, there is an introduction to sociological study with an emphasis on core models and concepts associated with major sociological perspective. 3 hours lecture per week. Prerequisite: DHY-2030, DHY-2020, DHY-2010, DHY-2721.

DHY-2220 Oral Pathology (2) spring

This course is the study of the functional and organic diseases of the oral cavity and their clinical management. 2 hours lecture per week. Prerequisite: DHY-2030 (or permission).

DHY-2721 Clinical Dental Hygiene II (5) fall

This is the experience of clinical practice with patients from Class 0 to Class 5 periodontal conditions. Children, adults, and special populations are treated. 1 hour lecture and 15 hours lab per week. Prerequisite: DHY-1012, DHY-1022, DHY-1030, BIO-2012. 1 hour lecture and 6 hours lab per week.

DHY-2722 Clinical Dental Hygiene III (6) spring

This is the continuation of DHY-2721. It involves clinical practice with patients from Class 0 to Class 5 periodontal conditions. Children, adults, and special populations are treated. The administration of local anesthetics will also be covered. 2 hours lecture and 15 hours lab per week. Prerequisite: DHY-2020, DHY-2010, DHY-2721.
Diesel Power Technology (DSL)

DSL-1000 Introduction to Diesel Power (4) fall
This course provides students with a basic overview of the diesel power industry. Topics include safety, tool usage, types of equipment, maintenance, and basic diesel fuel injection. Presentations by industry technical representatives and mobile maintenance service providers are also included. Field trips to independent, fleet, and factory service and parts facilities will be conducted. 3 hours of lecture, 3 hours of laboratory per week.

DSL-1010 Chassis Mechanical Systems (3) spring
This course provides a comprehensive study of the theory, design, construction, and repair of suspension, steering, and braking systems in diesel powered equipment and trucks. Topics include steering systems, conventional suspension systems, air suspension systems, wheels and tires, alignment, air braking systems, hydraulic and air over hydraulic braking systems, ABS and electronic brakes, and noise, vibration, and harshness. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: None.

DSL-1020 Diesel Power Systems (4) spring
This course provides a comprehensive study of the theory, design, construction, and repair of the diesel power-plant. Topics include fixed and mobile diesel power systems, engine design: types and components, definition of power and calculations, engine disassembly reconditioning, and reassembly, cooling and lubrication systems, breathing and retarding systems, and run-in, performance and maintenance, and failure analysis. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: None.

DSL-1040 Basic Diesel Electrical/Electronics Systems (4) fall
This course is intended to give students a thorough understanding of diesel electrical and electronic systems and to teach diagnostic and troubleshooting skills. Topics include Ohm's Law, basic circuits devices, circuit faults, basic computers, networks, feedback circuits, batteries, and charging and starting systems. The student will become familiar with various types of test equipment, diagnostic charts, and wiring diagrams. 3 hours of lecture, 3 hours of laboratory per week.

DSL-1050 Preventive Maintenance (3) spring
This course provides students with an understanding of the development and administration of preventive maintenance programs. Topics include PM schedules, types of service, record keeping, out-of-service vehicles, winterizing, coolants and additives, oil and lubricants, analysis and additives, contamination control, and track maintenance. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: None.

DSL-2010 Fuel Systems (4) fall
This course provides a comprehensive study of the theory, design, construction, and repair of diesel fuel system. Topics include an overview of diesel fuel injection systems, chemistry of combustion, diesel fuel and alternatives, fuel transfer systems, mechanical injector nozzles, and Unit Electrical Injector's (UEI), Bosch, Detroit Diesel, Caterpillar, Cummins DFI systems, governors, system diagnosis and service, and computerized fuel control systems. 3 hours of lecture, 3 hours of laboratory per week.
DSL-2020 Chassis Electrical and Electronic Systems (4) fall
This course is intended to give students a thorough understanding of advanced diesel chassis electrical and electronic systems and to teach diagnostic and troubleshooting skills. Topics include advanced networks and multiplexing, A/C systems, lighting systems, instrument panels, wiper and washer systems, alarm systems, collision avoidance systems, supplemental restraint systems, ground based communication systems, satellite based communication systems, and accessory systems. 3 hours of lecture, 3 hours of laboratory per week.

DSL-2030 Hydraulics (3) fall
This course provides a comprehensive study of the theory, design, construction, and repair of mobile hydraulic systems. Topics include hydraulic systems, components, hydraulic symbols and engineering drawings, pilot systems, and electronic control systems. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: DSL-1010.

DSL-2040 Power Transmission (4) spring
This course is intended to give students a thorough understanding of power transmission systems and to teach diagnostic and troubleshooting skills. Topics include introduction power transmissions, clutches and torque converters, manual transmissions, gear theory, planetary gear theory, hydraulic planetary controls and support systems, power-train management and electronically controlled transmissions, Allison Commercial Electronic Control (CEC) system, Eaton Auto-shift transmission, drive shafts, final drives, and tracks. 3 hours of lecture, 3 hours of laboratory per week.

DSL-2050 Emissions and Engine Performance (4) spring
This course is intended to give students a thorough understanding of advanced diesel engine performance and emissions systems and to teach diagnostic and troubleshooting skills. Topics include engine performance, emissions theory, exhaust emissions treatment, and diagnosis and correction of engine performance and emission complaints. 3 hours of lecture, 3 hours of laboratory per week.

DSL-2060 Fabrication (3) spring
This course provides a comprehensive study of manufacturing processes and fabrication. Topics include manufacturing processes, use of fabrication tools, job planning, basic gas and MIG welding, advanced welding, rodding and tubing of hydraulic cylinders, and drive-shaft repair. 2 hours of lecture, 3 hours of laboratory per week.

Economics (ECO)

ECO-2020 Macroeconomics (3) fall
The course consists of an introduction to basic principles of macroeconomic analysis and a survey of the economic government, household, and business sectors. The student is introduced to the analysis of the level and variations of the national income; government fiscal and monetary policies, money; the banking system; and the problems of inflation and unemployment. 3 hours of lecture per week. (General Education: SS) Prerequisite: Math placement level 2 or higher or permission.
ECO-2030 Microeconomics (3) spring

This course covers the theory and analysis of market structures, prices, profits, wages, interest, and international trade. Developments in such areas as agriculture and the balance of international payments are examined by means of reading and class discussion about current economic events. 3 hours of lecture per week. (General Education: SS). Prerequisite: Math placement level 2 or higher or permission.

Education (EDU)

EDU-2051 Teaching Methods I (3) fall/spring

The Teaching Methods I course is designed to provide in-depth coverage of technical center operations and procedures for teachers who are new to the field of Trade and Industry teacher licensure. The yearlong course includes a classroom component and a field practicum. The classroom component provides specific information on standards-based education, program competencies, competency and employability skill lists, and federal and state rules and regulations. The unique mandates of technical education are reviewed and implemented by course participants, who must be teaching at least one half day each week in a technical center under supervision of a peer coach. The practicum component of the course requires formal lesson plans, classroom/lab observations, and evaluation conferences with course teacher and field supervisor. Observations are conducted three times each semester.

EDU-2052 Teaching Methods I continued (3) fall/spring

Class continues curriculum from ED2051. Prerequisite: ED2051.

EDU-2061 Teaching Methods II (3) fall/spring

The Teaching Methods II course is designed to provide more in-depth coverage of technical center operations and procedures for teachers who are new to the field of Trade and Industry teacher licensure. The yearlong course includes a classroom component and a field practicum. The classroom component provides specific information on standards-based education, program competencies, competency and employability skill lists, and federal and state rules and regulations. The unique mandates of technical education are reviewed and implemented by course participants, who must be teaching at least one-half day each week in a technical center under the supervision of a peer coach. The practicum component of the course requires formal lesson plans, classroom/lab observations, and evaluation conferences with course teacher and field supervisor. Observations are conducted twice each semester.

EDU-2062 Teaching Methods II continued (3) fall/spring

Class continues work in Teaching Methods II course. Prerequisite: EDU2061.
Electromechanical Engineering Technology (ELM)

ELM-3015 Sensors and Instrumentation (2) fall
An introduction to the type of sensors used in research and industry to measure physical and mechanical parameters and the standard methods of interfacing these devices. Discussion includes investigation of the underlying physical phenomenon which each transducer exploits and various signal conditioning and interfacing strategies. Typical devices covered include strain gages, LVDTs, load cells, pressure transducers, tachometers, accelerometers, temperature sensors, level sensors, optical sensors. 1 hour of lecture, 3 hours of laboratory per week. Prerequisite: MAT-1520, PHY-1042, ELT-1110 or ELT-2072.

ELM-4015 Electro-Mechanical Power Systems (4) fall
A detailed analysis of the components in high-power hydraulic, pneumatic, and electrical systems. Topics include pumps, pneumatic circuits, safety valves, actuators, electric motors and generators, transformers, relays, solenoids, and high-power semiconductors. Emphasis is placed on specifications (power ratings), typical uses, and energy conversion issues. Programmable controllers are introduced to demonstrate control and sequencing in these systems. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: Senior standing in BSELM program or permission.

ELM-4231 Control Systems I (4) fall
Students are introduced to analytical system modeling and the design of controllers for closed-loop electrical and mechanical systems. Topics include finite state machine design and implementation, the development of dynamic systems models using Laplace techniques, block diagram system representation, time-domain and frequency-domain system analysis, the determination of system stability, system error computation, an introduction to controller design, and the design of discrete-time controllers using z-transform methods. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-2061, MAT-3170, senior standing in the BS ELM program, or permission of the instructor.

ELM-4232 Control Systems II (4) spring
Continuation of Control Systems I. Students are introduced to complex second-order, and higher-order systems. Topics include system identification methods, performance parameter design trade-offs, and designing higher-order controllers. Practical applications of microcontroller-based controller design are emphasized. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELM-4231.
ELM-4701 ELM Project I (2)
This course emphasizes project design, planning, and manufacturing issues. Topics include planning and budgeting, safety in the design, design for manufacturability, fabrication techniques, testing for safety and reliability, and quality control. Students are given a small electromechanical design on which to apply the lecture material. Students also select and begin planning a major, team-oriented project that is completed in Projects II. The project must have major electrical and mechanical components. 1 hour of lecture, 3 hours of laboratory per week. Prerequisite: Senior standing in the BSELM program or permission of the instructor.

ELM-4702 ELM Project II (3)
This course is a continuation of EMT Projects I, dealing primarily with issues of large-scale projects. Coordination between the members of the design teams is stressed, with frequent seminars and mini-presentations to inform everyone of the teams' progress. A major presentation of the teams' project is required at the end of the semester. Guest speakers and field trips are an intrinsic part of this course. 1 hour of lecture, 6 hours of laboratory per week. Prerequisite: ELM-4701.

Electrical Engineering Technology (ELT)

ELT-1000 Electrical and Computer Orientation (1)
This required forum introduces the student to the EET and CPE programs and helps facilitate the transition from high school to college life. The course includes presentations by ECT faculty members, staff, industry representatives, and Vermont Tech graduates about a variety of subjects. It also provides a weekly opportunity for announcements, questions, and discussions pertinent to the ECT student body, and to tend to administrative matters. This course gives the EET or CPE student an overview of the electrical and computer engineering technology courses of study, and insight into some possible career opportunities in these fields. It is intended to give students the guidance and the motivation needed to succeed at Vermont Tech, and to help build a sense of community among first year EET and CPE students. 1 hour seminar per week. Prerequisite: None.

ELT-1011 Fundamentals of Circuits I (3)
This is the first of a two-semester study of basic electrical circuits. Course content includes electric charge, voltage, resistance, energy, and power. DC circuit theory includes Ohm's Law, Kirchhoff's Laws, series and parallel circuits, and electrical sources. The concepts of superposition and Thevenin's Theorem are introduced as well. Laboratory sessions are used to verify and reinforce concepts introduced in lecture. A weekly recitation is used to review problem sets. Teamwork is emphasized throughout the course. 2 hours of lecture, 2 hours of laboratory, 1 hour of recitation per week. Co-requisite: MAT-1111.
ELT-1012 Fundamentals of Circuits II (3)
This is a continuation of ELT-1011. Course content includes the AC concepts of frequency, period, magnitude and phase of sine waves. Circuit parameters are studied as phasors and complex numbers, and are expressed in polar and rectangular forms. Topics studied include reactance, impedance, and power in series and parallel circuits. Theorems developed in DC are now used to analyze AC circuits. A weekly recitation is used for mastery of the subject. Laboratory sessions include the use of function generators and oscilloscopes. 2 hours of lecture, 2 hours of laboratory, 1 hour of recitation per week. Prerequisite: MAT-1111, ELT-1011. Co-requisites: MAT-1112.

ELT-1021 Fundamentals of Digital Circuits I (3)
A first course in the fundamentals of digital logic with applications. Basic principles are presented along with Boolean theorems and algebraic reduction techniques, number systems, Karnaugh mapping, and analysis of combinational logic circuits, digital arithmetic, synchronous counters, decoders, encoders, and multiplexers. Concepts and theorems developed in the classroom are explored in the laboratory through practical examples and applications. Trouble-shooting techniques for digital circuits are also developed and students learn how to properly document their results. 2 hours of lecture, 3 hours of laboratory per week. Co-requisite: ELT-1011.

ELT-1022 Fundamentals of Digital Circuits II (3)
This follow-on course to ELT-1021 introduces students to flip-flops, asynchronous counters, shift registers, state tables, and state diagrams. Analog-to-digital and digital-to-analog converters are covered as well as basic system memory elements. Students are introduced to the Altera software simulation program in the lab and learn how to burn their own chips. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-1021.

ELT-1031 Electrical Circuits I (4)
This course is an introductory study of DC and AC electrical circuits. Course content includes the basic ideas of electrical charge, current, voltage, resistance, energy and power. Capacitance, inductance, and the transient behavior of RC and RL circuits are also studied. For AC, the concepts of frequency, period, phase, and magnitude of sine waves are developed. The electrical circuit parameters are studied as phasors and complex numbers, and expressed in polar and rectangular form. Major AC topics studied include reactance, impedance, power, and resonance. Electric circuit theory includes Ohm's Law, Kirchoff's laws, series and parallel circuits, and electrical sources. Laboratory exercises develop the use of basic measurement equipment, such as the ammeter, voltmeter, and oscilloscope, while verifying the concepts studied in lectures. 3 hours of of lecture, 3 hours of laboratory per week. Co-requisite: MAT-1420.
ELT-1032 Electrical Circuits II (4) spring
This course is a continuation of ELT-1031. Circuit analysis using advanced network theorems and techniques is introduced. Topics such as Superposition, Mesh and Nodal analysis, Thevenin's theorem and Controlled sources are investigated. Other topics include transformers, poly phase circuits, frequency response and response to non-sinusoidal signals. Laboratory exercises provide experience in using oscilloscopes, function generators, and frequency counters on circuits demonstrating the concepts developed in lectures. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-1012 or ELT-1031, MAT-1420. Co-requisites: MAT-1113 or MAT-1520.

ELT-1051 Presentation Graphics I (1) fall
An introductory course that provides the fundamentals of graphing and graphics as needed in quality laboratory reports. Topics include introductory graphs—both manual and computer generated, application of spreadsheets to generate and document data presentations, the use of MS Word for laboratory and data documentation, and the use of Electronics Workbench for basic circuit schematic generation and simulation. At the end of the course there will be a two-week project that will use all tools explored in the course. 3 hours of laboratory per week. Co-requisites: ELT-1011 or ELT-1031, MAT-1112 or MAT-1420.

ELT-1052 Presentation Graphics II (1) spring
A continuation of ELT-1051 that in part expands on some of the topics in that course. In addition, students will investigate drafting software including AutoCAD schematic capture, and printed circuit design. Additional studies in web page design will allow the student to document technical issues on the web. At the end of the course there will be a two-week project that will use the tools explored in the course. 3 hours of laboratory per week. Prerequisite: ELT-1051, ELT-1110 or ELT-1022. Co-requisite: ELT-1032.

ELT-1080 Electronics for Computer Engineering (4) fall/spring
This course gives students an overview of topics from solid-state electronics. Topics include diode circuits, the transistor as a small signal amplifier and as a switching element, op-amp circuits, and interfacing circuits common to computer applications. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-1031.

ELT-1101 General Electronics I (4) fall
This is an introductory course for students who are not majors in the Electrical Engineering Technology or the Computer Engineering Technology programs. It presents a survey of the fundamental principles of electrical theory, in order to provide the basic understanding for further study and application in other areas. Key topics in direct current (DC) and alternating current (AC) circuits are presented, including current, voltage, resistance, capacitance, inductance, reactance, impedance, energy, power, electrical sources, magnetism, and transformers. A brief introduction to semiconductors is presented. Common measurement instruments are discussed and used in laboratory experiments. 3 hours of lecture, 3 hours of laboratory per week. Co-requisite: MAT-1420.
ELT-1102 General Electronics II (4) as required
This course continues the topics from ELT-1101 General Electronics I, as survey of the fundamental principles of electronic theory for students who are not majors in Electrical Engineering Technology or Computer Engineering Technology programs. Prerequisite: ELT-1101.

ELT-1110 Introduction to Digital Circuits (4) fall/spring
This first course in digital electronics introduces hardware programmable (wired) digital structures from a functional perspective. The logic function -- its representation, simplification, and implementation -- is developed as a central concept. Two network classes are identified and analyzed: combinatorial and sequential. The nature of digital signals, number systems, the algebra of logic and graphical minimization are among the topics investigated. Common logic functions are realized in the laboratory using currently popular digital integrated circuits of varying complexity (small-, medium-, large-scale integration). A familiarity with vendor offerings and knowledge of data book specifications are emphasized. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-1031.

ELT-2010 Analog Electronics (4) as required
This course for General Engineering Technology majors introduces the use of diodes and transistors as basic circuit elements in power supplies, amplifiers, and digital gates. Operational amplifier configurations are examined in detail. Transfer functions, frequency response, and the effects of feedback are explored. 3 hours of lecture, 3 hours of laboratory per week. Co-requisite: ELT-1031.

ELT-2020 Microprocessor Techniques/Computer Engineering (4) fall
This course extends ELT-1110, CIS-2025, and ELT-1080 to software programmable digital structures. Computer architecture is studied in the context of an x86 microprocessor. Computer functions of processing, storing, interfacing, and controlling are presented from a hardware and a software view. Programs that interact with custom built hardware are written in both assembly languages and in a high level language. 3 hours of lecture, 3 hours of lab per week. Prerequisite: CIS-2025, ELT-1110, ELT-1080.

ELT-2030 Digital Electronics II (4) as required
The second course in a sequence of digital electronics for students majoring in Telecommunication Technology. This course is designed to train students in the organization, architecture and hardware aspects of digital computer systems. Topics include and introduction to microprocessors, types and characteristics of different chips, microprocessors architecture, introduction to programming, PC system organization, operating systems, motherboards, bus structures, memory, I/O interface devices, disc drives, video displays, and printers. Serial and parallel buses are discussed. Applications include the interfacing of peripherals, data communications between computers, and a team project. 3 hours of lecture, 3 hours of lab per week. Prerequisite: ELT-1110.
ELT-2040 Computer System Components/Interfaces (4) spring
This course is a continuation of the interfacing concepts started in ELT-2020 from the local processor level to the board and systems level. Topics studied include data communications standards and techniques, data structures, multiple interrupt problems, and advanced assembly language programming. Computer systems and peripherals are studied with emphasis on dealing with systems, reading documentation, and interconnecting subsystems. Software will be written to test the systems. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-1080, ELT-2020, CIS-2025.

ELT-2050 Microcomputer Techniques/Electrical Engineering (4) fall/spring
This course introduces students to the fundamentals of computers with an emphasis on applications using microcontrollers. Topics include assembly language programming, computer architecture (CPU, memory, input/output devices, and busses), counters, timers, parallel ports, A/D and D/A converters, and interfacing to switches, keypads, display devices, simple sensors, and DC motors. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-1110 or ELT-1022, CIS-2025. Co-requisite: ELT-2051.

ELT-2051 Electronics I (4) fall
This is an introductory course in electronics. It extends DC-AC circuits into active devices and their associated circuitry. Stress is placed on solid-state theory. Diodes, bipolar transistors, and several types of field-effect transistors are studied. Small signal equivalent circuits and large signal graphical analysis are developed. Included in the applications studied are Class A and Class B amplifiers. Practical approximation methods are developed throughout the course. 3 hours of lecture, 3 hours laboratory per week. Prerequisite: ELT-1032, MAT-1520.

ELT-2052 Electronics II (4) spring
A continuation of ELT-2051 that is more system oriented than device oriented. Modeling and the effects frequency has on gain, bandwidth, and phase angles of electronic amplifiers and systems are explored. Operational amplifier and integrated circuit active filters and oscillators are investigated. Power supplies, both linear and switching are also examined. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-2051, ELT-2060, MAT-1520.

ELT-2060 Electronic Applications (4) fall/spring
The purpose of an application course is to integrate material from several courses in order to achieve small working systems. In the process of achieving integration, topics in the theory and application of operational amplifiers, the theory and application of A/D and D/A systems and the integration of instrumentation will be explored. Analysis in both time and frequency will be used. Additional topics will be added as seen appropriate. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-1040 or ELT-1032. Co-requisite: ELT-2050, 2051.
ELT-2061 Electromechanical Systems I (4)
The course introduces applied system mathematics, including block diagram algebra, LaPlace transform techniques, a graphical technique such as Bode an Nyquist plots, and root locus plots. Analog sensors and transducers and filters are covered. Additional devices including operational amplifiers and servo-motors, necessary for the operation and modeling of simple automatic control systems also are covered. Mathematical models for all devices are developed and used. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: MAT-1520, and ELT-1032, and ELT-1110 or ELT-1021.

ELT-2071 Basic Electricity (3)
The course introduces the physical concepts of electricity and electrical devices for mechanical engineering technology students. Fundamentals of power, resistance, inductance, capacitance, motors, and generators from the standpoint of their relationship to mechanical applications are covered. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: MAT-1520.

ELT-2072 Electronics (4)
Linear and digital electronics, including microprocessors, are studied from the standpoint of the electrical-mechanical interface. Concepts of sensors and transducers, amplifiers, semiconductor control devices, and integrated logic circuits account for approximately two-thirds of the course. The last third is spent on learning the application of a small microcomputer to simple industrial control problems. Related laboratory exercises reinforce the class material. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-2071, MEC-1050.

ELT-2110 Digital Systems (4)
This course provides students outside the Electrical Engineering Technology and Computer Engineering Technology programs with an introduction to digital electronics and an overview of basic microprocessor systems. The concepts of digital systems are developed beginning with number systems and continuing through digital gates, complex functions, and memory elements. Both the software and hardware components of microprocessor systems are introduced. Laboratory exercises in hardware and software are designed to develop the student's analytical and troubleshooting skills. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: MAT-1100, ATT-1120, CIS-1050.

ELT-2130 Industrial Electronics (4)
This is a multi-purpose course designed to acquaint the student with the electronic devices, circuits and computer techniques used to control industrial operations. Specifically included in the course are sensors and related instrumentation, power switching devices, DC and AC motors, stepping and brushless motors and Programmable Logic Controllers. Applications and control issues involved with these devices are investigated in detail. If time permits, additional topics of student interest will be investigated. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-2060, ELT-2051.
ELT-2720 Electrical Project (3)
Spring

This course introduces the student to electrical product development and fabrication. Topics include schematic and circuit layout conventions, printed circuit board assembly, enclosures, connector and cabling options, and scheduling, budgeting, and documenting the project. Each student will work on a product of reasonable complexity, develop and assemble a printed circuit board, and document and present the finished product. The laboratory portion is intended to develop practical skills in circuit board layout and fabrication. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: Sophomore standing in the EET program or permission of the instructor.

ELT-2730 Engineering Project (3)
as required

The goal of the capstone course is to provide students with an opportunity to use their technical knowledge to develop a final technical project. Students need to use their abilities in analysis, synthesis, and interpersonal skills to solve engineering or manufacturing problems. The objectives of the course are for students to apply technical knowledge to solving problems, practice decision-making skills, demonstrate teamwork, perform technical analysis, demonstrate synthesis, develop documentation and presentation skills, and develop time management. Prerequisite: ELT-1051, ELT-2050, ELT-2051.

ELT-3010 Digital II (4)
Fall

This course is designed to extend the student's skill with digital hardware. It covers more advanced topics than can be covered in a first digital course, including advanced digital design techniques. Various design methodologies are studied such as state machine design and the use of hardware description languages. Applications focus on the design of computer hardware subsystems. The laboratory experiences illustrate the various methods for design entry such as schematic entry and VHDL. Additionally, simulation and testing is a major focus in lab. Designs are implemented using commercial programmable logic devices (PLDs). 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-1110, ELT-1080.

ELT-3020 Electrical Circuits and Controls (4)
Fall

This course provides an intense introduction to the basics of DC and AC circuits. The applications of these principles to electromechanical systems, transformers, power distribution, and motors are explored. Transducers, sensors, and the fundamentals of digital systems are examined as well. 3 hours lecture, 3 hours laboratory per week. Prerequisite: MAT-1520, Junior standing or permission.

ELT-3030 Solid State Electronics (4)
Spring

This course reviews solid state theory and introduces students to multilayer semiconductor devices (diodes, bipolar and field effect transistors, thyristors, PUTs, etc.). Other topics include integrated circuit amplifiers, comparators, timers, regulators, multiplexers, and oscillators. Computer simulation software is used. 3 hours lecture, 3 hours laboratory per week. Prerequisite: ELT-1032 or ELT-3060.
ELT-3040 Electronic and Data Communications (4) spring
This course introduces students to the concepts necessary to understand data communications in today's networked world. Both analog communications and digital communications are studied. Topics include media characteristics, Fourier series analysis, frequency division multiplexing, noise, and modulation techniques. Additional topics include network protocols, data encoding techniques, error detection and correction, encryption, and data compression. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: MAT-1520, ELT-2050, ELT-3030, CIS-2025.

ELT-3050 Microprocessor Techniques II (4) spring
This third course in digital electronics focuses on implementing an embedded system. Topics include a review of programmable peripherals, interfacing standard i/o devices and sensors found in embedded systems, standard communication interfaces, battery-based operation, ROMable code, mixed language programming (assembly language and C), real time programming issues, and hardware based debugging techniques (in-circuit emulation). The students work with a single board computer and build a complete, stand-alone embedded system. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-2020 or 2050, 3010.

ELT-3060 Electrical Circuit Analyses (3) fall
This course reviews and extends the circuit analysis capabilities of students who have only had an introductory electrical circuits course. Topics include passive components (resistor, capacitor, inductor, transformers), Kirchoff's laws, network theorems (mesh, nodal, Thevenin, Norton, superposition), dependent sources, two port models, and transient response. This course emphasizes alternating current concepts and makes use of computer simulation software. 3 hours of lecture per week. Prerequisite: MAT-1520, ELT-2072 or ELT-1031, and Junior standing in the BSELM program.

ELT-4010 Computer Architecture (3) fall
This course discusses the architecture of computer systems, both inside the CPU as well as outside. Topics include pipelines, cache, floating-point unit, RISC vs CISC architecture, and so forth. Issues such as branch prediction, pipeline interlocks, and coordinating SMP machines are discussed. Additional topics cover the system at large: busses of various types, memory architecture, disk controllers, NICs, etc. The emphasis is on real systems and characteristics of current technology. 3 hours of lecture per week. Prerequisite: ELT-3050.

ELT-4020 Digital Signal Processing (4) spring
Digital Signal Processing (DSP) hardware and software topics are examined in this course. Students gain familiarity with DSP hardware system design and peripheral interface techniques. Efficient software implementations of DSP algorithms and mathematical functions are also examined. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: ELT-2020 or 2050, MAT-2532.
English (ENG)

ENG-1041 Basic College Writing (4) fall

This integrated course helps students develop basic reading and writing skills. Comprehension and vocabulary skills are taught through analysis of technical reading selections. Students write regularly and improve their grammar skills through systematic review. (Offered as ESL-1041 for ESL students.) 3 hours of lecture, 2 hours of laboratory per week. Prerequisite: Placement.

ENG-1042 Expository Writing (4) fall/spring

Students develop their reading skills by analyzing examples of professional writing in class; they develop their writing skills in daily journals and in at least five essays. Students review principles of grammar and sentence construction. Emphasis is placed on the process of revision through class editing of student essays. Word processing and computer network skills are taught in the laboratory section. The course also includes an oral presentation and a library exercise. 3 hours of lecture, 2 hours of laboratory per week. Prerequisite: ENG-1041 or placement.

ENG-1043 Research Writing (4) fall/spring

This course is a continuation of ENG-1042 and completes the English composition sequence. Students develop their expository and argumentative writing skills through writing exercises, finished essays, and an oral presentation. Research skills are developed through library assignments and research exercises. At the conclusion of the course, students prepare a research paper. 3 hours of lecture, 2 hours of laboratory per week. Prerequisite: ENG-1042.

ENG-1060 Freshman Composition (4) fall/spring

This course teaches the same writing concepts as GE 114 while providing students with additional time to improve their basic writing skills. Successful completion of this course prepares students for GENG-2080. All students are introduced to composing on the word processor. 3 hours of lecture, 2 hours of laboratory per week. Prerequisite: Placement.

ENG-1061 English Composition (3) fall

Students are expected to read and think critically, to write effectively, and to understand the fundamentals of literary analysis and written composition. Classroom discussion of assigned readings and the construction of related essays are stressed. A required research paper demonstrates the student's use of the library in locating, organizing, and presenting materials in an accepted format. All students are introduced to composing on the word processor. 3 hours of lecture per week. Prerequisite: Placement.
ENG-1070 Effective Speaking (3) fall/spring

Students study various theories of effective oral communication with the focus on organizational communication. Students develop their abilities to listen, to analyze audiences, and to use visual aids. They learn through study and experience how to communicate effectively in three primary settings: person to person, person to group, and group. 3 hours of lecture per week. (General Ed: AH). Prerequisite: None.

ENG-2080 Technical Communication (3) fall/spring/summer

This course is a comprehensive study of the principles, methods, and forms needed to produce clear and effective technical reports, proposals, instructions, graphic aids, and correspondence. Students are prepared for employment interviews through their study of principles of oral communication and their writing of job application letters and resumes. A major technical report, written on some topic in the student’s field of concentration and in consultation with his/her technical department faculty, is required. 3 hours of lecture per week. Prerequisite: ENG-1043, 1060, or 1061.

ENG-2101 Introduction to Creative Writing (3) as required

This course encourages students to explore themselves and the worlds around them with a writer's eye. They will learn how to identify stories and how to tell them in the particular format that suits them. Students will begin with practicing the four steps of the writer's process, will read stories and essays by other writers, and will workshop each other's stories. 3 hours of lecture. (General Education: AH). Prerequisite: ENG-1061 or equivalent.

ENG-2320 Themes in American Literature (3) as required

Students read and discuss selected works of recent and earlier American literature focusing on themes such as growing up American, the immigrant experience, country life vs. city life, alienation, the pioneer experience, the impact of the western hero, and the work ethic. Understanding and appreciation of the uniqueness and continuity of these themes and of the methods used by fiction writers will enhance the students' reading experience. 3 hours of lecture per week. (General Education: AH). Prerequisite: ENG-1061 or equivalent.

ENG 3490 Crime and Punishment (3) as required

This course introduces students to the fundamental legal and ethical issues in American crime and criminal justice through film and literature. The course examines the dilemmas in crime and punishment. Students discuss the literature and films in the context of the humanities. Counts as a humanities elective. Prerequisites: Junior standing or permission of the instructor.
Environmental Studies (ENV)

ENV-3050 Issues in Environmental Studies (3) as required

Technological advances have been used to lessen or solve many of humanity's problems. However, there seems to be one major area, the environment, where advances in technology have not accomplished that end. What is so different about an environmental problem that leads to reluctance to use technological advances to find and implement solutions? This course uses political, economic and sociological perspectives to look at environmental problems, proposed solutions, and the failure of society to implement effective solutions. (General Education: SS). Prerequisite: Junior standing or permission.

English for Speakers of Other Languages

ESL-1041 Basic College Writing (4) fall

This integrated course helps non-native English speaking students at the intermediate and high intermediate level to develop their skills in grammar, writing, reading, listening and speaking. These basic academic skills are taught, practiced, and tested in the classroom, the writing laboratory, and the language laboratory—which has ESOL software. Students develop academic writing skills through weekly assignments. Reading comprehension and vocabulary skills are taught through analysis of general and technical reading selections. To pass the course and enter Vermont Tech non-ESL English courses, students must achieve at least a "B" and demonstrate improved skills in two post-course placement tests. 2 hours of lecture, 2 language lab hours and 2 writing lab hours per week. Placement assessment of intermediate to high intermediate level of English, Vermont Tech writing placement test.

Geography (GEO)

GEO-1010 World Geography (3) as required

This course introduces students to the fundamental concepts of geography and the major geographic regions of the world. The course examines the ecological interactions between the physical and the human environment; following an introduction to the basic terms and concepts of geography, the course continues to explore each of ten regions of the globe. 3 hours of lecture each week. (General Education: SS). Prerequisite: None.

History (HIS)

HIS-1111 World History (3) as required

An introduction to world civilizations: Ancient, Mediterranean, European, South Asian, East Asian, and African. Study includes origins of the time of global expansion of European civilizations. 3 hours of lecture per week. (General Education: SS). Prerequisites: None.
HIS-1211 American History I (3) fall
In the course, students survey the major historical events of the period as they affected
the lives of the American people. Emphasis in the course is placed on the changes in
institutions, values, and lifestyles that characterized the evolution of our society from a
colonial, agrarian culture to that of a unified, democratic republic. 3 hours of lecture per
week. (General Education: SS). Prerequisite: None.

HIS-1212 American History II (3) spring
Students examine the historical roots of American society as an individualized,
urbanized, technological culture and consider the problems and solutions generated by
such a culture. The evolution of the U.S. in foreign affairs to its present status as a
superpower is also studied. 3 hours of lecture per week. (General Education: SS).
Prerequisite: None.

HIS-1260 Information Technology Past, Present and Future (3) fall
The history of computing from the early mechanical devices, theoretical milestones,
electronic computers of the late 1940's and 1950's, generational changes in architecture,
underlying technologies, and the progression from mainframes, to minicomputers,
supercomputers, microcomputers and embedded computers, and networking.
Introductory societal and/or ethical issues such as the digital divide, encryption, peer-to-
peer file sharing, and computers &; homeland security. Organizational and human forces
shaping the adoption of information technology and the difficulties that may be
experienced during a systems implementation, a change of systems, and the impacts of
computer technology on employment, health, and the community. It concludes with
various trends and forces shaping information technology and probable changes that
will occur from a futurist perspective. Topics include: recent new technologies and their
effect on people and society, basic concepts of future studies, the application of future
studies to make a prediction regarding new technologies. 3 hours lecture. Prerequisite:
None. (General Education: SS - For non-computer students).

HIS-2150 History of U.S. in the Sixties (3) as required
This course explores the movements and events of the United States during one of the
most tumultuous decades of our history--the 1960's. Through documentary films and
other media, readings, websites, and discussion, students will study such topics and
themes as the Civil Rights Movement, John F. Kennedy presidency, administration, and
assassination, the Student Movement, the impact of the Vietnam War, and the music, art,
and literature of the Hippie Counterculture that are the hallmarks of a decade marked by
social activism and political and cultural upheaval. Through individual and group
reading, study, and presentation, students will learn the beginnings of such movements
as the environmental, women's and minority rights, the spiritual, youth, and psychedelic,
and the space race. (General Education: SS). Prerequisites: None.
Humanities (HUM)

HUM-2020 Bioethics (3) as required
An exploration of ethical issues from beginning-of-life to end-of-life, from legal, medical, and philosophical perspectives. Topics include assisted reproduction, abortion, euthanasia, genetic experimentation and cloning, and homosexuality. 3 hours of lecture per week. Prerequisites: None. (General Education: AH).

HUM-2040 The Holocaust (3) as required
Students in this course will examine the Holocaust thematically through a variety of mediums: psychology, history, literature, and sociology. (General Education: AH). Prerequisites: None.

HUM-2060 Cyberethics (3) as required
This course introduces students to the fundamentals of ethical inquiry and the ethical implications of developments in computer technology. 3 hours of lecture per week. (General Education: AH). Prerequisites: None.

HUM-2070 Vampire in Literature (3) as required
The image of the vampire has long held sway with popular imagination. Since the publication of Bram Stoker's "Dracula" in 1897, the vampire has become a staple of popular culture, appearing in literature, advertisements, cartoons, music, television shows and film. This course examines the role of the vampire in literature, culture and film. Through the reading of texts and the viewing of films, students will understand the fundamental aspects of Gothic literature and formulate their own ideas as to the importance of the vampire archetype. In addition, students will learn to identify vampirical elements in literature and film and will enhance their knowledge and understanding of the vampire's role in popular culture. General Education requirement: ENG 1061 or equivalent.

HUM-3050 Theories of Science and Technology (3) as required
This course explores a variety of historical and philosophical perspectives on science and technology. Special emphasis is placed on the relationships of science, technology, social and political structures, and individual responsibility. Topics include: the nature of science and technology; elitism in science and technology; goals and control; the role of the individual scientist or technician. 3 hours lecture per week. (General Education: AH). Prerequisite: Junior standing or permission.

HUM-3070 Vampire in Literature--Upper Level (3) as required
The image of the vampire has long held sway with popular imagination. Since the publication of Bram Stoker's "Dracula" in 1897, the vampire has become a staple of popular culture, appearing in literature, advertisements, cartoons, music, television shows and film. This course examines the role of the vampire in literature, culture and film. Through the reading of texts and the viewing of films, students will understand the fundamental aspects of Gothic literature and formulate their own ideas as to the importance of the vampire archetype. In addition, students will learn to identify vampirical elements in literature and film and will enhance their knowledge and understanding of the vampire's role in popular culture. (General Education: AH). Prerequisite: Junior standing or permission.
Individual Research, Ind. Study, Special Topics (XXX)

XXX-X710 Special Topics as required
These courses are for one-time or special offerings that do not have an approved course number. They may be in any subject area and the credits may vary. The special topics course requirements and evaluation criteria are developed by the instructor, subject to departmental approval. Details of specific course content are available from the instructor or from the department chair for the subject offered.

XXX-X910 Individual Research/Study as required
These courses are subjects on course material that do not have an approved course number. They may vary in subject area and the credits may vary. These courses are for individual research. The research project must be related to the student's major field of study or another area approved for independent study. Prerequisites and Course Notes: permission of the Department Chair and Academic Dean required.

Interdisciplinary

INT 1000 Freshman Orientation as required
This course is designed to facilitate a successful transition to college and focuses on: orientation to college; academic success strategies; professional development; and introduction to a degree program or programs. Topics include: student rights and responsibilities, student grading and graduation requirements, student information technologies and data base orientation, campus/site resources, time management, notetaking, introduction to career opportunities and program specific topics. 1 hour of seminar per week. Prerequisites and Course Notes: None.

Landscape Development and Ornamental Horticulture (LAH)

LAH-1000 Freshman Orientation (1) fall
This course is designed to facilitate a successful transition to college and focuses on four primary areas: orientation to the College; academic success strategies; professional development; and introduction to business careers. Topics include student rights and responsibilities; campus resources; time management; notetaking; test taking, learning styles and study skills; self esteem, group dynamics and stress management; introduction to career opportunities. 1 hour of seminar per week. Prerequisite: None.
LAH-1020 Introduction to Horticulture (3) fall
This survey course introduces the principles and practical applications of horticulture. Students become familiar with the basic science that forms the foundation of horticulture and use this information to understand how horticulture is applied. Topics include plant classification, plant structures, plant physiology and development, plant environments, plant propagation, harvesting and post-harvest preservation, and crop improvement. 3 hours of lecture per week. Prerequisite: None.

LAH-1021 Landscape Graphics (3) fall
The purpose of this course is to familiarize students with a broad range of graphic techniques as well as the specific tools necessary for each. Specific coursework includes an introduction to mechanical drawing, conventions of landscape/architectural drawing, including their intentions, capabilities and use; three dimensional drawing techniques, tonal value and texture rendition, various media and their specific uses, lettering, and color rendering for presentations. 6 hours of laboratory per week. Prerequisite: None.

LAH-1030 Woody Ornamentals (3) fall
This course covers the identification of approximately 90 to 120 native and cultivated woody plants found in northern New England. In addition, plant characteristics, landscape use, cultural requirements, and plant associations are explored. Emphasis is placed upon both plant identification and the plant selection process. Drawing as part of learning is encouraged. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: None.

LAH-1031 CAD for Landscape Design (1) spring
Students are introduced to landscape drafting and design using AutoCAD and other computer-aided drafting software. 3 hours of laboratory per week. Prerequisite: LAH-2011.

LAH-1040 Greenhouse Management (4) spring
This course covers the fundamentals of commercial greenhouse production. Control of the greenhouse environment and the effects this has on plant growth are stressed. Students learn about greenhouse construction, heating and cooling, growing media, fertilization, watering, pest control, and the production of container-grown crops. Laboratory exercises are conducted in the greenhouse or at the facilities of local growers. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: None.

LAH-1050 Introduction to Soils (4) spring
Subject areas covered include soil formation and classification and the ways in which chemical, physical, and biological properties of soil affect plant growth. The course also deals with problems of soil drainage and the tillage methods best suited to erosion control. Students learn about soil testing and the most effective liming and fertilizing practices for economical crop production. The College and home farms are used in soil and fertilizer problem solving. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: None.
LAH-2010 Landscape Construction and Management (4) fall

This course introduces students to the materials and methods of landscape construction and management. Emphasis is placed on how general design intentions are developed at the site and detail level, resolved according to sound principles of construction, and professionally documented according to conventional standards. Specific coursework includes surveying, map making, construction of freestanding and retaining walls, construction of patios and walkways, basic equipment operation and safety procedures, grading (earthworks), and the principles of statics and mechanics as they apply to landscape design. Theory and practice are emphasized equally. 6 hours of laboratory per week. Prerequisite: LAH-2011.

LAH-2011 Introduction to Landscape Design (3) spring

The goal of this course is to introduce students to the basic design principles of landscape design in order to build a fundamental knowledge of, and fluency in, the issues and language of design and its application. The coursework is based on a progression of basic design principles that build to an increasingly sophisticated understanding of design and its application, with a strong emphasis on the interrelatedness of architectural built form and landscape built form. Throughout the course, verbal and graphic communication of ideas and solutions are emphasized. Individual design projects are developed under faculty supervision and are then presented to a jury of faculty and distinguished practitioners. Additionally, students receive an overview of landscape architectural history and are exposed to the work of practitioners in the field. 6 hours laboratory per week. Prerequisite: LAH-2011.

LAH-2012 Advanced Landscape Design (3) spring

This course explores two essential aspects of landscape design: the art of site analysis and planning and the art of appropriate plant and materials selection in support of a design idea. During the course of the semester, students work on a “real world” project where they are asked to complete a thorough site analysis in preparation for the development of a working master plan, develop a detailed planting and construction plan, and, finally, develop a cost estimate for the client. Throughout the semester, design composition and emphasis are stressed, as are oral and graphic presentation skills. Individual design projects are developed under faculty supervision and presented to a jury of faculty and distinguished practitioners. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: LAH-2011.

LAH-2020 Plant Propagation (3) fall

Students in this course study the principles that explain and control plant propagation, as well as practice plant propagation techniques in the laboratory. Propagation by seeds, cuttings, grafting, layering, and other common methods is explored. Special emphasis is placed on the newest techniques in plant tissue culture. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: LAH-1020.
LAH-2030 Herbaceous Plant Materials (3) fall

The primary objective of this course is to familiarize students with approximately 100 to 150 native and introduced herbaceous plants including perennials, annuals, biennials, bulbs, and turfgrass. Emphasis is placed upon: identification; aesthetic and functional uses in the landscape; plant culture and maintenance; transplanting; and planting design and composition. 2 hours lecture, 3 hours laboratory per week. Prerequisite: None.

LAH-2720 Landscape Design/Ornamental Horticulture Seminar (2) spring

This course is designed with a two-fold purpose: 1) to assist all Landscape Development & Ornamental Horticulture students in developing the attitudes and skills essential for career success; and 2) to act as a capstone course with a focus on the many possibilities within the broad field of horticulture and design. As such, it concentrates on the following critical areas: 1) job search, including researching the job market and targeting the specific discipline area within the horticulture/design field the student is interested in pursuing; 2) researching the various options within that targeted field; 3) writing a resume and cover letter; and 4) preparing either a portfolio, business plan, or some other significant project that demonstrates the student’s readiness to seek employment. In addition, students are introduced to a broad spectrum of practicing professionals from all walks of the landscape design and horticultural fields, which also allows for opportunities for discussion of employment possibilities. This course is designed to develop attitudes and skills essential for career success. 1 hour of seminar, 2 hours of laboratory per week. Prerequisite: Sophomore standing.

LAH-2810 Landscape Horticulture Internship (1) summer

After successful completion of the first year core curriculum, students are required to experience horticulture or design in an employment setting. With the aid of program faculty and staff, students will arrange a summer job/practicum that will broaden their understanding of real world horticulture and design. Prerequisite: Completion of the freshman year or by permission.

Mathematics (MAT)

Students who have shown exceptional mathematical ability may be placed into calculus as their initial mathematics course at Vermont Tech. If this course is completed successfully, then prior requisite courses for calculus will be waived.

MAT-1040 Mathematics for Allied Health (2) spring

This course gives an introduction to basic concepts in general mathematics, ratio, proportions, variation, financial applications, statistics, two- and three-dimensional geometry, especially as related to volume, dosages and solutions, and US-metric conversions. 2 hours of lecture per week. Prerequisite: Placement.
MAT-1100 Introduction to Technical Mathematics (3) fall
This course provides an introduction to technical mathematics for students in the Automotive Technology and Construction Practice & Management programs. It is designed for students whose academic background includes only an introduction to algebra and geometry. Topics covered include a review of arithmetic, percentages, dimensional analysis, scientific notation, sign numbers, order of operations, basic algebra including (exponents, radicals, factoring, algebraic fractions), ratio and proportions, systems of equations (2 x 2 only), graphing of equations, formulas, linear and quadratic equations, vectors, geometry, and right triangle trigonometry. 3 hours of lecture per week. Prerequisite: Placement.

MAT-1111 Intermediate Algebra (5) fall
This first course of a three-semester sequence in mathematics is designed to establish a solid foundation in algebra, numerical geometry, and right triangle trigonometry. Topics include: scientific notation; units of measurement; percentages; sign numbers; order of operations; exponents (integer); numerical geometry; first degree equations; literal equations; systems of equations; Cramer's rule; word problems; and right triangle trig. 4 hours of lecture, 2 hours laboratory per week. Prerequisite: Placement.

MAT-1112 College Algebra & Trigonometry (5) spring
This is the second course of a three-semester sequence in mathematics designed to establish a solid foundation in algebra, numerical geometry, and trigonometry. Topics covered in this course include trigonometry, vectors, algebraic fractions, fractional equations; exponents and radicals; quadratic equations; logarithms; and exponentials. 4 hours of lecture, 2 hours of laboratory per week. Prerequisite: MAT-1111.

MAT-1113 Pre-Calculus (5) fall
This third of a three-semester sequence in mathematics, equivalent to Technical Mathematics, gives students a solid background in trigonometry, functions and graphs, and the conic sections. It provides a solid conclusion to the concepts of technical mathematics for students who take this as a terminal course, yet is also excellent preparation for students who intend to continue with mathematics in calculus. Topics include: radians; arc length; uniform circular motion; oblique triangles; trigonometric graphs; trigonometric identities; trigonometric equations; word problems; functions and graphs; asymptotes; and the conic sections. 4 hours of lecture, 2 hours of laboratory per week. Prerequisite: MAT-1112.

MAT-1210 Principles of Mathematics (3) fall/spring
This course is a review of general mathematics principles and an introduction of concepts for solution of agricultural, agribusiness, and business problems. Topics covered include pocket calculator use, basic algebraic operations, solution of linear and quadratic equations and inequalities, variation, trigonometry of right triangle, growth, compound interest, debt amortization, probability, and statistics. 3 hours of lecture per week. Prerequisite: Placement.
MAT-1221 Finite Mathematics (3) fall
This course introduces the student to use of a variety of mathematical tools to solve applied problems. Topics may include: functions, graphing, linear models, matrices and linear systems of equations, linear programming, exponential models, elementary probability and statistics, and math of finance. 3 hours of lecture per week. Prerequisite: Placement.

MAT-1420 Technical Mathematics (5) fall/spring
The course stresses the relation of mathematics to engineering applications and development of an appreciation of the importance of precision in mathematical thought. It covers use of the graphing calculator, solution of linear and quadratic equations, exponents and radicals, logarithms, exponential functions, sine and cosine laws, vectors, operations with imaginary and complex numbers, trigonometric identities and equations, and graphs of trigonometric functions. 5 hours of lecture per week. Prerequisite: Placement.

MAT-1421 Technical Mathematics I (4) as required
A study of selected topics and applications of mathematics. Topics include: algebraic expressions, linear equations and inequalities, algebraic equations in one, two and three variables, quadratic equations and right angle trigonometry. The use of the graphing calculator is integrated into the course. 4 hours of lecture per week. Recommended prior learning: basic algebra and basic geometry skills. Students must take a math assessment for placement purposes prior to registration. Prerequisites: None.

MAT-1422 Technical Mathematics II (4) as required
A continuation of the topics of Technical Mathematics, Part I. 4 hours of lecture per week. Prerequisite: MAT-1421.

MAT-1520 Calculus for Engineering (4) fall/spring
Students who have shown exceptional mathematical ability may be placed into Calculus as their initial mathematics course at Vermont Tech. If this course is completed successfully, then prior requisite courses for Calculus will be waived. A presentation of basic concepts of plane analytical geometry and calculus is given. Topics include differentiation and integration of algebraic, trigonometric, exponential, and logarithmic functions with emphasis on technical applications. 4 hours of lecture per week. Prerequisite: MAT-1420 or MAT-1113.

MAT-2021 Statistics (3) spring
This course is an introduction to the basic ideas and techniques of probability and statistics. It is designed to prepare students to interpret quantitative information and to make statistical decisions. Topics include: descriptive statistics, probability, characteristics of the normal distribution, mean and standard deviation, and steps in hypothesis testing. 3 hours of lecture per week. Prerequisite: MAT-1210, 1221 or 1420.
MAT-2532 Calculus II (4) fall/spring
Topics include techniques of integration, numeric integration, hyperbolic functions, indeterminate form and improper integrals, polar coordinates, parametric equations, and infinite series. 4 hours of lecture per week. Prerequisite: MAT-1520.

MAT-2533 Calculus III (4) spring
This course provides students with an opportunity to continue their study of calculus and covers the traditional third semester topics in calculus: vectors, partial derivatives, multiple integrals, vector analysis, and differential equations. 4 hours of lecture per week. Prerequisite: MAT-2532.

MAT-3170 Applied Mathematics for Engineering (3) spring
This course introduces selected topics of advanced mathematics and applies them directly to key areas of electrical and mechanical analysis. Includes selected topics in solutions of first and second order differential equations, Laplace transforms, Fourier series, partial differential equations, numerical methods of solving ordinary and partial differential equations, and systems modeling concepts. 3 hours of lecture per week. Prerequisite: Junior standing or permission of the instructor, MAT-2532, ELT-1060 or ELT-3020.

MAT-3720 Topics in Discrete Mathematics (3) fall
This course introduces fundamental topics in discrete mathematics that offer theoretical support for a variety of computer applications. Applications such as algorithm development and analysis, error analysis, data encryption and combinatorics are best understood with a foundation in logic and proof theory, set theory, probability, number theory and the structure of modern algebra. This course will introduce the mathematical concepts and then follow them with some application of the concepts to computer science and computer technology. 3 hours of lecture per week. Prerequisite: MAT-2532.

Mechanical Engineering Technology (MEC)
MEC-1000 Freshman Seminar (1) fall
The seminar presents an introduction to the mechanical engineering technician career and to the skills of life-long learning. Introductory design projects, research, lab experiments, student presentations, speakers from industry, and field trips help develop teamwork, communications, and study skills, and give an overview of the broad field of mechanical engineering technology. 1 hour of seminar per week. Prerequisite: None.
MEC-1011 Design Communication I (2) fall
The course provides a basic understanding of the principles and technology of mechanical drawing and computer modeling as methods of documenting and communicating mechanical designs. The concepts of geometric construction, orthographic projection, sectional and auxiliary views, dimensioning, and fasteners are covered using hand-drawing techniques and basic drafting tools. Basic proficiency is also developed in computer-aided design (CAD) using a two-dimensional documentation software and a three-dimensional parametric solid-modeling software. The computer operating system, file management techniques, and email are also introduced. 6 hours of laboratory per week. Prerequisite: None.

MEC-1012 Design Communication II (2) spring
In this course, students gain proficiency in communicating mechanical designs using hand drawing and computer modeling, building on the fundamentals learned in the previous course. In addition, students gain skills in project management and teamwork. Students work in teams on short- and long-term mechanical design projects, maintaining electronic design notebooks and project webpages. Students practice two-dimensional and three-dimensional computer modeling and web authoring. 6 hours of laboratory per week. Prerequisite: MEC-1011.

MEC-1020 Manufacturing Processes (2) fall/spring
This course will introduce the student to machine tools, measuring instruments and machining operations and how they relate to the manufacturing process. The concept of the job shop and production plant will be studied, and the relationship of design, production control and manufacturing will be demonstrated. Computer-aided manufacturing (CAM) will be introduced. 1 hour of lecture, 3 hours of laboratory per week. Prerequisite: None.

MEC-1040 Introduction to Materials Science and Engineering (3) spring
The structural nature and various mechanical properties governing the selection, use, and behavior of engineering materials, both metallic and non-metallic, is studied in this course. In the laboratory, students evaluate and control material properties through various testing, mechanical, and thermal procedures. 2 hours lecture, 3 hours laboratory per week. Prerequisites: PHY-1041 or equivalent.

MEC-1050 Computer Applications for Mechanical Engineering (1) fall
This course introduces the student to the college network, Microsoft operating system, email and Internet. Focus is on the mechanical applications for spreadsheets, analysis and organization of electronic data, data acquisition and analysis, and presentation of technical information using various computer applications. 2 hours laboratory per week. Prerequisites: None.
MEC-1060 Metrology and Inspection Techniques (3) as required
No description available. Prerequisite: MAT-1420, MEC-1020.

MEC-1070 Tool Geometry and Productive Metal Cutting (1) as required
This course is designed to help students develop an understanding of the theory and practical applications of modern cutting-tool technology. After successfully completing this course, participants will be competent to recognize and define the various geometries associated with cutting tools and how they relate to the material and manufacturing process. 4 hours of laboratory each week.

MEC-2010 Fluid Mechanics and Fluid Systems (4) fall
This course examines the interrelationships between the nature of fluid properties, the behavior of fluids at rest and in motion, and the utilization of fluids to effectively accomplish a wide range of useful purposes. Laboratory experience and observation develops a working knowledge of fluid properties, fluid behavior, and fluid systems for power transmission and control. 3 hours lecture, 3 hours laboratory per week. Prerequisite: MAT-1520, MEC-1050, PHY-1041 or 1022.

MEC-2020 Applied Mechanics (3) fall
At the completion of this course, the student should be familiar with equilibrium as it applies to coplaner and noncoplaner force and moment systems and friction. Principles of centroids and moments of inertia are discussed. In addition, the course includes dynamics using Newton's second law as it applies to rectilinear and curvilinear motion. 3 hours of lecture per week. Prerequisite: MAT-1113 or 1420, MEC-1050, PHY-1041 or 1022, and MEC-1011.

MEC-2030 Strength of Materials (4) spring
This course will familiarize the student with stress analysis by studying coaxial and shear stress and strain, temperature relationships, torsion, shear and bending moments, beam stresses and deflections. Columns, joints, thin-walled cylinders, combined stresses, Mohr’s circle, and the effects of fluctuating loads on machine parts will be introduced. The course will also include the use of computer applications to solve stress and bending problems. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: MAT-1520, MEC-2020, MEC-1040.

MEC-2040 Computer-Aided Technology (2) fall
Students develop skills to program CNC lathes and milling machines. Software linking CAD programs with CNC machines, industrial pick and place robots, and Flexible Machining Systems is presented. In addition, the student is kept up to date on current developments in computer-aided technology. 1 hour of lecture, 3 hours of laboratory per week. Prerequisite: MEC-1020, MEC-1011, MEC-1050.
MEC-2050 Thermodynamics and Heat Transfer (4)
Spring
The purpose of this course is to help the student to acquire a familiarity with the first and second laws of thermodynamics; the equations of state, perfect gas processes, and various power cycles. The student will develop some skill in applying these principles to the analysis of devices which utilize the power cycles such as the Otto, Diesel, Rankine, and vapor-compression cycles. Conduction, convection, and radiation heat transfer are also introduced. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: MEC-2010, PHY-1042.

MEC-2060 Mechanisms (3)
Fall
The student in this course should acquire a thorough understanding of the displacement, velocity and acceleration characteristics of plane motion and the associated graphical and computer-aided methods of analysis. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: MEC-1050, MEC-1011, PHY-1041 or 1022.

MEC-2070 Machine Design Components (3)
As required
This course familiarizes the student with the various types of machine elements that are used in mechanical design and helps them understand the design intent based on functionality, strength and durability. 2 hours of lecture per week, 3 hours of laboratory per week.

MEC-2720 Mechanical Projects (3)
Spring
Through this course, the student will gain an understanding of the application of mechanical parts, such as screws, gears, shafts, bearings, chains, belts, clutches and brakes, to the design of mechanical devices. A central component of this course is a team-based project to design and fabricate a mechanical system. This course is the capstone experience for the Mechanical Engineering Technology program. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: MEC-1020, 2060. Co-requisite: MEC-2030.

MEC-3020 Manufacturing Processes and Machine Design (3)
Spring
This course integrates concepts in manufacturing processes with elements of machine design. Fabrication techniques using manufacturing tools such as mills and lathes are covered, as well as an introduction to computer-aided manufacturing. Design implications of selected components such as gears, bearings, chains, belts, clutches, brakes, and couplings are discussed. The course culminates with a project that employs the practical applications of many of the covered topics. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: Junior Standing in the BSELM program.

MEC-3030 Properties and Mechanics of Materials (3)
Spring
This course provides an overview of the nature and structure of materials, the properties of different materials classes (metals, ceramics, polymers, and composites), and materials processing and testing methods. The course also introduces the student to concepts of materials strength, such as stress analysis and design, by studying stress and strain produced by direct, torsion, and bending loads using shear and moment diagrams and beam deflections. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: Junior Standing in the BSELM program.
Nursing (NUR)

NUR-0111 Principles and Practices of Nursing I Lab (4) fall
Laboratory component of NUR-1111. 12 hours of clinical/laboratory per week, including math for meds. Co-requisite: NUR-1111.

NUR-0121 Principles & Practices of Nursing II Lab (4) winter
Laboratory component of NUR-1121. 12 hours of clinical/laboratory per week. Co-requisite: NUR-1121.

NUR-0131 Principles & Practices of Nursing III Lab (4) spring 2
Laboratory component of NUR-1131. 18 hours of clinical/laboratory per week for the 10-week spring term. Co-requisite: NUR-1131.

NUR-1010 Pharmacology for Nursing (3) winter
This course acquaints the student with classifications of drugs according to body systems and the use of these drugs for the purpose of restoring or maintaining health. Orem's Self-care Theory is integrated into practical application vis-a-vis a client's pharmacologic needs. The course begins with basic terminology and progresses to the process of medication administration. The student studies standards and legislation as they relate to drugs. The role of the nurse, the nursing process, nutrition, and principles of ethics as they relate to pharmacology are included in the curriculum. A basic study of pharmacokinetics helps the student to understand how drugs are absorbed, transported, metabolized, and excreted. A review of pharmacotherapeutics helps the student to realize how drugs are utilized by the human body and how the client's age and unique characteristics affect this process. 3 hours of lecture per week. Co-prerequisites: BIO-2012 or permission.

NUR-1020 The Nurse-Client Relationship (3) fall
The content of this course is designed to assist the nursing student to cope with the human relations challenges encountered in his/her career. Discussions encourage the student to broaden views and develop an awareness of the uniqueness of man. The course implements the philosophy and objectives of the program by stressing the importance of Orem's Self-care Deficit Theory for the psyche as well as the body, and presents basic principles, concepts and information regarding communication, listening, and assertiveness. The student also learns the importance of confidentiality and ethical behavior as part of the interdisciplinary team. Additional presentations include: the community, the family, cultural diversity, sexual harassment, death and dying, and the impaired professional. 3 hours of lecture per week. Prerequisite: Permission.
NUR-1111 Principles and Practices of Nursing I (5) fall

This course provides an opportunity for the student to acquire the selected knowledge and skills necessary to meet the basic self-care needs of the assigned client in both long term care and acute care settings. Course content emphasizes the role of the practical nurse in the recognition, description, and maintenance of health. Orem's Self-care Theory is integrated into practical application during lectures and in NUR-0111. Application of the nursing process in the care of clients with self-care deficits is the focus, with emphasis on data collection. Additional topics presented include: roles of various health care team members, concepts of effective communication, and effective maintenance of a safe and therapeutic environment. Initially, nursing arts laboratories are used for skill demonstration and practice with advancement toward clinical application. Simultaneous enrollment in NUR-0111 is required. 5 hours of lecture per week. Prerequisites: Permission. Co-requisites: NUR-1111.

NUR-1121 Principles and Practices of Nursing II (5) winter

This course offers the student opportunity to reinforce and build upon previously learned information. The goal is to provide safe, competent, standard nursing interventions to clients experiencing recurring health care problems in acute and long term care settings. The student learns to care for groups of clients utilizing the nursing process to organize and implement nursing care. The student selects appropriate goals toward meeting the client's self-care needs. Observational experiences are provided in certain specialty areas. The student is expected to demonstrate increasing ability to perform standard nursing interventions in the clinical environment with decreasing need for supervision. Simultaneous enrollment in NUR 0121 is required. 5 hours of lecture per week. Prerequisite: BIO-1030, BIO-2011, NUR-1111, NUR-0111. Co-requisites: NUR-1010, NUR-0121.

NUR-1131 Principles and Practices of Nursing III (5) spring 2

This course explores integrative concepts in nursing and in the developing family. The student expands knowledge and increases skills necessary to meet the self-care deficits of individuals experiencing common health care problems with an emphasis on parent/child care and mental health. In addition to continuing to use the nursing classroom laboratory, the student also learns, through selected clinical experiences, in obstetric, pediatric and medical-surgical settings. The student demonstrates skill in problem solving through the use of the nursing process with a focus on implementation and evaluation of nursing care. Simultaneous enrollment in NUR 0131 is required. 7.5 hours of lecture per week for the 10-week spring term. Prerequisite: All previous LPN course work. Co-requisite: NUR-0131.
NUR-2010 LPN to RN Transition/Trends in Nursing (2) fall
This course is designed to assist the student to recognize both personal and professional challenges that arise in the process of transitioning from the role of the practical nurse to that of the registered nurse. Additionally, issues and trends important to contemporary nursing are evaluated and analyzed. Theories regarding the transition process, role development, and the process of change are applied to personal adaptation, professional issues and role differentiation in terms of responsibilities and scopes of practice for the LPN and ADN. Current issues are examined through assigned reading, written submissions, and lively discussions. The student will ultimately develop an individual philosophy of differentiated nursing practice. Corequisites: NUR-2030, NUR-2040.

NUR-2011 Advanced Pharmacology (1) spring
This course assumes that students have retained knowledge gained in NUR-1010 Pharmacology. It is a body-system-oriented approach to analyzing the use of particular medications for complex medical/surgical conditions in clients across the lifespan. The clinical component of this class is demonstrated in NUR-2140. The student will integrate and evaluate the effectiveness of each client outcome as it relates to his/her pharmacologic needs. Prerequisites: NUR-1010 (or equivalent); 2030, 2040, BIO-2120. Co-requisites: NUR-2130, 2140.

NUR-2030 Principles and Practice of Nursing IV (3) fall
This course is divided into three content areas: a) health promotion and physical assessment (3 weeks); b) maternity nursing (6 weeks); and c) psychiatric nursing (6 weeks). Part a) assumes prior knowledge of normal physiological and developmental parameters and focuses on assessing abnormal conditions and encouraging a maximum level of self-care by promoting healthy behaviors. Such topics as the importance of an accurate and complete health history including a psychosocial, cultural and spiritual assessment and a health risk appraisal are covered. Lab and acute care clinical experiences are provided. Part b) assumes previous learning of the normal and expected conditions relating to the maternity client. Assessment of, planning care for, implementing interventions for, and evaluation of the normal antepartal, intrapartal, and postpartal client at the level of the registered nurse are covered. The content builds on this and focuses on abnormal conditions and the expanded role of the registered nurse. Clinical experiences in inpatient and outpatient settings are provided. Students assist the maternity client and family to recognize their self-care needs. Part c) offers the student an opportunity to gain the tools necessary to assess, plan, and evaluate interventions in the care of the client population dealing with mental health needs. Students select appropriate roles to be assumed in assisting clients to meet their mental health self-care needs The student is expected to perform therapeutically in the clinical setting. Simultaneous enrollment in NUR-2040 is required. Prerequisite: PN License and permission. Co-requisites: NUR-2040, 2010.

NUR-2040 Principles and Practices of Nursing IV Lab (2) fall
Laboratory component of NUR-2030. 6 hours of clinical/laboratory per week. Co-requisite: NUR-2030.
NUR-2130 Principles and Practices of Nursing V (5)
This course offers students the opportunity to learn about clients across the lifespan experiencing complex acute medical surgical illnesses and chronic self-care deficits. Experiences are also provided in intensive care, the emergency room, and a home health agency. The student demonstrates skills in decision-making through the use of the nursing process with an emphasis on implementation and evaluation. The student also selects the appropriate roles to be assumed in meeting the client’s self-care needs. The student is expected to perform therapeutically in the clinical area with a decreasing need for instructor supervision. Simultaneous enrollment in NUR-2140 is required. 5 hours of lecture per week. Prerequisite: BIO-2120, NUR-2010, 2030, 2040. Co-requisites: NUR-2720, 2140.

NUR-2140 Principles & Practices of Nursing V Lab (4)
Laboratory component of NUR-2130. 12 hours of clinical/laboratory per week.
Co-requisite: NUR-2130.

Philosophy (PHI)

PHI-1010 Introduction to Philosophy (3) as required
In examining the history of philosophy from Socrates to Sartre, students look at the diverse perspectives, methods and conclusions of significant philosophers, both classical and contemporary, concerning selected topics in metaphysics, epistemology, ethics, political philosophy, and aesthetics. Class discussion of reading is directed toward an increased understanding of significant contemporary problems in light of the relevant philosophical issues. 3 hours of lecture per week. (General Education: AH). Prerequisite: None.

PHI-1030 Introduction to Logic (3) as required
This course encompasses the principles and conditions of correct reasoning including the relationship between language and thought, deductive arguments, and the methods of inductive inference. Throughout the course, the students will be expected to apply these principles in analyzing arguments. 3 hours of lecture per week. (General Education: AH). Prerequisite: None.

PHI-1040 Introduction to Ethics (3) as required
This course introduces some of the major ethical theories about morally right action, the morally good person, and the just society. Such theories may include ethical absolutism, ethical relativism, ethical egoism, utilitarianism, formalism, and rights theory. Topics may be drawn from contemporary moral issues, such as capital punishment, abortion, and euthanasia. Prerequisite: None. (General Education: AH).
Physics (PHY)

PHY-1021 Introduction to Newtonian Mechanics (4) fall/spring

Students taking this one-semester course study the fundamental topics necessary for further study in physical sciences and engineering technologies. The topics covered are: systems of units, converting units, one- and two-dimensional kinematics, vectors, Newton's Laws of Motion, and static equilibrium and torque. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: None.

PHY-1022 Energy Conservation and Equil (4) fall/spring

This one-semester course is a continuation of PHY-1021 Introduction to Newtonian Mechanics. It is designed to familiarize the student with the concepts of work, energy, power, impulse-momentum, and the laws of conservation. These concepts are used to investigate both translational and rotational motion. Other topics covered include elasticity and the physics of static and dynamic fluids. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: PHY-1021.

PHY-1030 General Physics (4) spring

This one semester, general physics course has the purpose of introducing the student to basic classical physics. Topics include: Newtonian mechanics, elasticity, fluids, heat transfer, gas laws, some thermodynamics, and DC and AC circuits. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: MAT-1100 or equivalent.

PHY-1041 Physics I (4) fall/spring/summer

The purpose of this course is to give the student in engineering technology a thorough study of the basic principles of physics. Topics covered in this course are systems of measurement; dynamics, including motion, acceleration, forces producing motion, work, energy, and power; momentum and the conservation laws; statics, including concurrent and noncurrent forces; fluids, including properties of gases, fluid pressure, density, buoyancy, and hydraulics. Previous successful completion of a course in physics is highly desirable. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: None. Co-requisite: MAT-1420.

PHY-1042 Physics II (4) fall/spring/summer

This course is a continuation of Physics I for electrical engineering technology and computer engineering technology students. Emphasis is on understanding basic physical concepts that relate both to practical situations and to subsequent technical courses. Topics include heat, wave motion, electrical and magnetic field theory, electricity, light, and semi-conductor physics. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: PHY-1041 or 1022.
PHY-1043 Physics II for Architectural Programs (3) fall

This course for architectural students is a continuation of Physics I and is a study of heat, including specific heat, latent heat, and heat transfer; wave motion, light, including such topics as mirrors, lenses, refraction, interference, and polarization; electricity, including such topics as electrical and magnetic field theory, light, solid-state physics, current, DC series and parallel circuits, energy, power, and AC series circuits. This course is co-taught with PHY-1042 lecture sections. 3 hours of lecture. Prerequisite: PHY-1041 or 1022.

PHY-2041 Fundamentals of Physics I with Calculus (4) spring

This course, an alternative for Physics 1041, is intended for engineering technology students who have demonstrated an above-average ability in verbal skills and mathematics and whose mathematics and science preparation includes algebra, plane trigonometry, and basic physics. Prior completion of a course in calculus or concurrent enrollment in Calculus (MAT-1520) is required. Topics covered are systems of measurement; dynamics, including motion, acceleration, forces producing motion; work, energy, and power; momentum and conservation laws; statics, including concurrent and nonconcurrent forces; and fluids, including properties of gases, fluid pressure, density, buoyancy, and hydraulics. 3 hours lecture, 3 hours laboratory per week. Prerequisite: Adequate preparation in mathematics and science. Department permission required. Co-requisite: MAT-1520.

PHY-2042 Fundamentals of Physics II with Calculus (4) fall

This course is a continuation of calculus-based PHY-2041. Topics in wave motion, heat, electricity and magnetism, light, and solid-state and modern physics are covered. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: PHY-2041, MAT-1520.

PHY-3120 Introduction to Modern Physics (4) spring

This calculus based course continues the study of classical physics and introduces the student to topics in modern physics such as: special relativity, atomic theory, solid state physics, nuclear physics, and some elementary particle theory. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: PHY-1042 or equivalent.

Political Science (POS)

POS-1020 Introduction to American Politics & Government (3) fall

The course is a survey of the American political system with emphasis on the origins and function of the Federal Government and its branches and on the American political process. The nature, scope, and authority of state and local government is also covered. 3 hours of lecture per week. (General Education: SS). Prerequisite: None.
Psychology (PSY)

PSY-1010 Introduction to Psychology (3) fall/spring

This course is a study of the biological foundations and the basic psychological processes and concepts involved in human behavior as well as an examination of the problems involved in personality adjustment and interpersonal relations. 3 hours of lecture per week. (General Education: SS). Prerequisite: None.

PSY-1050 Human Growth & Development (3) winter

This course is designed to teach the developmental stages of humans from infancy through the aging process. Course content includes general and specific principles and concepts of growth and development, as well as physical, motor, cognitive, and psychosocial characteristics of the various developmental stages. The course implements the philosophy and objectives of the program by stressing the importance of the changes that occur at each stage of the life span. There is no specific clinical laboratory. However, the student is expected to apply acquired principles and concepts in determining needs and implementing care of the client through all phases of the age continuum. The unique safety needs and health care maintenance needs of each developmental stage are emphasized. 3 hours of lecture per week. Prerequisite: Permission. (General Education: SS).

PSY-2310 Adolescent Development (3) as required

An examination of the physiological, psychological, and social development of adolescents. Explores puberty, adolescent sexuality, adolescent rebellion, and identity formation, peer relations, idealism and alienation. 3 hours of lecture per week. Prerequisite: None. (General Education: SS).

Respiratory Therapy (RSP)

RSP-1000 Introduction to Respiratory Practices (1) fall

This course provides an orientation to respiratory care practices. Students will review the issues of quality in respiratory care and be introduced to the concept of evidence-based medicine as it applies to the practice of respiratory care. The students will analyze problems depicted in case studies for the topics of communication techniques, medical ethics, and legal implications of practice. Students also will learn to select and apply infection control procedures. One hour of lecture per week. Prerequisite: None.

RSP-1011 Respiratory Care I (4) fall

In the laboratory setting, the student will begin to learn the skills and techniques of managing and treating patients with respiratory needs. Basic health care skills will be taught along with some basic respiratory procedures. The student will learn firsthand how equipment performs under specific circumstances—which will expand clinical ability and capability. The student also will become familiar with such techniques as checking equipment function and testing equipment performance. 3 hours lecture, 3 hours lab per week. Prerequisite: None.
RSP-1012 Respiratory Care II (4) spring

In this course, students will learn the skills and techniques of managing and treating patients with respiratory needs both in the classroom and laboratory setting. The clinical effects of various types of respiratory therapy and diagnostic techniques are explored. Oxygen therapy, aerosol therapy, and respiratory drugs are thoroughly discussed. Specifics only per inflation therapy, pulmonary hygiene and chest physical therapy, as well as techniques of airway management are included. In the laboratory, students will apply their classroom knowledge of the above subjects. 3 hours lecture, 2 hours lab per week. Prerequisite: RSP-1011, BIO-2011.

RSP-1210 Respiratory Anatomy and Physiology (3) spring

This course teaches the basic physiology of the pulmonary system. The physiological principles underlying various therapeutic, diagnostic, and monitoring procedures in respiratory care will be detailed. Students will interpret patient data, solve problems and analyze patient cases using these physiological concepts. 3 hours lecture per week. Prerequisite: RSP-1011, BIO-2011.

RSP-1801 Respiratory Clinical Field Experience (2) spring

This is a field experience of one day per week that allows the student to become familiar with the hospital setting and perform basic respiratory therapy in non-critical areas of the hospital. 8 hours clinical per week. Prerequisite: BIO-2011, RSP-1011.

RSP-2011 Cardiopulmonary Disease I (5) fall

Analysis of respiratory disturbances requires an understanding of the etiology, pathophysiology, and clinical signs of the disease, thus, leading to a plan for treatment. The study of cardiopulmonary disease will begin with a presentation of advanced clinical assessment techniques. Measures used to evaluate ventilation, hemodynamics, oxygen transport and tissue oxygenation will be discussed in relation to respiratory assessment of the critically ill patient. Chest radiographs and electrocardiographs will be presented. 5 hours lecture per week. Prerequisite: RSP-1210, BIO-2012.

RSP-2012 Cardiopulmonary Disease II (5) spring

A continuation of Cardiopulmonary Disease I presenting additional diseases affecting the pulmonary system. For each disease, emphasis is placed on etiology and pathogenesis, pathology, pathophysiology, and clinical features. A case study approach is utilized to enhance the student's ability to exercise judgment in handling patient complaints, collect and examine data, formulate treatment options, assess patient responses to treatment and modify therapy. 5 hours of lecture per week. Prerequisite: RSP-2011.
RSP-2013 Respiratory Care III (3)
Respiratory Care III leads the student through an ordered approach to modern ventilator care. A systematic development of mechanical ventilation competencies is laid out concept upon concept. Noninvasive and invasive monitoring of the patient on mechanical ventilation is also presented. In the classroom, students will apply these concepts to patient care scenarios. In the laboratory, students will complete a series of mechanical ventilation and critical care monitoring competencies. 2 hours lecture, 2 hours lab per week. Prerequisite: RSP-2012, BIO-2012.

RSP-2802 Respiratory Clinical Field Experience II (4)
This is a field experience of two days per week that allows the student to work in clinical areas in which they have received instruction. Students will be directly and indirectly observed performing respiratory care in the critical care and non-critical care settings. 16 hours per week. Prerequisite: RSP-1801, BIO-2012.

RSP-2803 Respiratory Clinical Experience III (6)
This course is designed to supply supervised clinical experience in the critical care areas of the hospital and in specialty service areas of the hospital and in the community. There will be a strong emphasis on intensive care techniques and procedures. Instruction will take place in the adult, pediatric, and neonatal areas. Students will be introduced to infant and pediatric mechanical ventilation, and home care. Students will continue to gain proficiency in adult care throughout the medical system. 24 hours clinical per week. Prerequisite: RSP-2802.

RSP-2810 Respiratory Internship (1)
This course is a field experience of two days per week that allows the students to work in clinical areas in which they have received instruction. Students will be directly and indirectly observed performing respiratory care in the non-critical care setting. 16 hours per week. Prerequisite: RSP-1801, RSP-1012.

Social Science

SSC-2010 Science, Technology, and Society (3)
This course explores the ways that science and technology are related to the broader social context of human civilization. Case studies illustrate the social and environmental impacts of science and technology, as well as the ways that social structures influence the development of science and technology. Guest lecturers discuss the responsibility of the individual technician. Students give oral presentations and engage in class debates. 3 hours of lecture per week. (General Education: SS). Prerequisite: None.
SSC-2030 Energy and Society (3) as required
This course is designed to enable students to gain insights into the energy issue and to promote energy awareness and conservation. Topics will include a history of energy use, forms of energy, energy resources, renewable sources, the economics of energy production and consumption, and relevant social issues regarding energy. Appropriate field trips and guest lectures are scheduled. 3 hours of lecture per week. (General Education: SS). Prerequisite: None.

Telecommunication Technology (TCT)

TCT-1000 Telecommunications Orientation (1) fall
An orientation to the college experience, including an analysis and discussion of learning styles, time management, test-taking, and study skills. Prerequisite: None.

TCT-1001 Telecommunications I (4) fall
An introduction to the techniques, principles, and terminology of Voice telecommunications will be presented. Public and private telecommunication networks will be examined. Telecommunication equipment, switching and transmission technology will be demonstrated. The frequency spectrum, modulation schemes and multiplexing techniques will be explored. Lectures, interactive learning and demonstrations will be employed. Laboratory exercises will be required. 3 hours lecture, 3 hours lab per week. Prerequisite: None.

TCT-1002 Telecommunications II--Introduction to Voice and Data (4) spring
An introduction to the techniques, principles, and terminology of Data Communications will be presented. Public and private networks will be examined. Data communication equipment, multiplexing, and interactive learning demonstrations will be employed. Laboratory exercises will be required. 3 hours lecture, 3 hours lab per week. Prerequisite: TCT 1001.

TCT-2003 Telecommunications III--LANS and WANS (4) fall
This course is designed to train students in the organization, architecture, setup, maintenance, hardware and software aspects of computer networks. Topics include: introduction to networks; types and characteristics of different network architectures (LAN to WAN); network topologies and cabling; intra and inter-network devices; network operating systems; peer-to-peer and client/server environments; LAN setup and maintenance; inter-network communications including connecting a LAN to the Internet; remote network access; network printing; network security; and World Wide Web Server. A hands-on approach will be taken, with team projects throughout. 3 hours lecture, 3 hours lab per week. Prerequisite: TCT 1002.
TCT-2004 Telecommunications IV--Advanced Topics (4) spring
A survey of current and emerging technologies in Telecommunications will be presented. Lectures, interactive learning, demonstrations, and site visits will be employed. 3 hours lecture, 3 hours lab per week. Prerequisite: TCT 2003.

Technical Education (TEC)

TEC-1110 Issues and Trends in Technical Education (3) summer
This course is designed to provide in-depth coverage of current issues in technical education with a historical perspective on the development of programs in Vermont.

TEC-1120 Reading in Technical Education Content Areas (3) summer
The course is designed to assist technical center teachers in the development of techniques that will allow them to teach basic reading skills as an integrated part of their technical classroom. The primary focus will be on teaching skills for "reading to learn" about subject content. Technical Center classrooms by nature is a process-centered mode. Students learn in ways that allow direct application to technical job requirements. This course emphasizes the same process-centered approach for the teaching of reading skills.

TEC-1130 Vocational Instruction for Students with Special Needs (3) summer
This three credit course is designed to inform technical educators about students who are members of special populations, including methods of identification, assessment, modifications and accommodations provided to these individuals and the role of the technical educator in these processes.

Theatre Arts (THA)

THA-2060 Women in Film (3) fall
Students in this course will study a variety of contemporary films--all portraying complex and conflicted female protagonists--against a working definition of "feminism" in order to develop the ability to interpret films critically, to write and speak about films analytically, and to apply those interpretive skills to the larger subject of gender studies. (General Education: AH) 3 hours lecture per week. Prerequisite: None.

THA-2070 Comedy in Film (3) as required
This course provide students with an overview of the psychological, social, and dramatic roots of comedy, as well as with a review of the social context of American comedy. Students will study paired films, all of which use elements of comic structure, characterization, plot, symbolism, and themes. (General Education: AH). 3 hours lecture per week. Prerequisite: None.
Veterinary Technology (VET)

VET-1010 Introduction to Veterinary Technology (1) fall
To introduce students to the wide range of employment opportunities for the veterinary technician. Presentations by guest lecturers are included. Information on using the library, Learning Center, and other support facilities on campus is provided. Students are introduced to different study skills and problem-solving techniques. 1 hour of lecture per week. Prerequisite: None.

VET-1020 Animal Anatomy and Physiology (4) spring
Covered in this course are the anatomy and physiology of organs and organ systems in animals. There is emphasis on basic physiology common to domestic animals. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: BIO-2320.

VET-1030 Animal Care and Restraint (3) fall
This course teaches the principles of animal management which are fundamental to animal health. The student is introduced to the basics of animal behavior, handling and restraint, feeding, housing, and disease prevention. Laboratories stress hands-on experience with the handling, restraint, physical exam, and administration of medications to the common domestic species and laboratory animals. Proficiency in performance of laboratory tasks is evaluated. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: None. Co-requisite: VET-1010.

VET-1040 Animal Diseases (4) spring
Bacterial, viral, fungal, and parasitic diseases are discussed. Review of disease prevention practices. Laboratories concentrate on diagnostic techniques including microbiology, fungal cultures and evaluations, parasitologic specimen collection and processing, necropsy procedures, specimen handling, and shipping specimens to other laboratories. 3 hours of lecture, 2 hours of laboratory per week. Prerequisite: VET-1010, 1030. Co-requisite: VET-1060.

VET-1051 Animal Care I (1) fall
This course is designed to give students hands-on experience in the daily care and maintenance of farm, laboratory and pet animals. Students are assigned times to care for the colony dogs, cats, laboratory animals, birds, sheep, horses and dairy animals under supervision. This course is repeatable for credit. Selected hours throughout the term. Prerequisite: None. Co-requisite: VET-1030 or equivalent or by permission of instructor only.

VET-1052 Animal Care II (1) spring
This course is designed to give students hands-on experience in the daily care and maintenance of farm, laboratory and pet animals. Students are assigned times to care for the colony dogs, cats, laboratory animals, birds, sheep, horses and dairy animals under supervision. This course is repeatable for credit. Scheduled hours throughout the term. Prerequisite: None.
VET-1060 Laboratory Techniques (5)
Spring

Students learn to perform venipuncture, complete blood counts, urinalyses, serum chemistries, and supplemental hematologic evaluations on all species studied in VET-1030. Proficiency in performing tasks in the laboratories is emphasized. 3 hours of lecture, 4 hours of laboratory per week. Prerequisite: VET-1010, 1030. Co-requisites: VET-1020, 1040.

VET-2011 Veterinary Clinical Techniques I (3)
Fall

Students learn the stages of anesthesia, and to induce and monitor anesthesia under the direct supervision of a veterinarian. Surgical nursing skills associated with aseptic technique and proper protocol in the surgery suite are covered. Pre- and post-op monitoring, record keeping and client education skills are practiced. Students perform blood work, urinalysis, and fecal examination on animals that are scheduled to be anesthetized as medically indicated. 2 hours of lecture, 3 hours of laboratory per week. Prerequisite: VET-1040, 1060.

VET-2012 Veterinary Clinical Techniques II (3)
Spring

This course provides instruction in radiography of both large and small animals. The laboratories review of anesthesia while the students learn to position animals for radiographs and develop, handle, and store the films. Ancillary techniques such as dentistry procedures are also covered. Students perform blood work, urinalysis, and fecal examination on animals that are scheduled to be anesthetized as medically indicated. 2 hours lecture, 3 hours laboratory per week. Prerequisite: VET-2011, 2050.

VET-2030 Animal Nutrition (2)
Fall

This course familiarizes the student with the various nutrients and their metabolism. Diet formulation for the common domestic and laboratory animals is covered, including species variation in nutritional requirements. The use of prescription diets for small animals is discussed. Practical information regarding client education for feeding both large and small animals is presented. 2 hours of lecture per week. Prerequisite: Permission.

VET-2040 Reproduction and Genetics (3)
Spring

This course provides instruction in genetics and comparative reproductive physiology of domesticated animals. Reproductive management is covered, including heat detection, determination of pregnancy, management of pregnant animals and parturition, and reproductive failure. Students gain information on how to assist veterinarians with reproductive and obstetrical procedures. 3 hours of lecture per week. Prerequisite: Permission.

VET-2050 Applied Laboratory Methods (4)
Fall

Students learn medical nursing skills including bandaging, responding to medical emergencies, CPR, handling trauma cases, preparing animals for certain diagnostic procedures, obtaining an EKG, blood transfusions, and fluid therapy. Cytological specimens are collected and evaluated. 3 hours of lecture, 3 hours of laboratory per week. Prerequisite: VET-1040, 1060. Co-requisite: VET-2011.
VET-2060 Veterinary Office Procedures (3)

Spring

Students review material on professionalism and interactions with clients that they have been introduced to in other courses. This course then provides additional information on interpersonal communication, professional correspondence, legal issues regarding medical records, organizing an office, financial record keeping, and OSHA compliance. Practical information on evaluating a potential job position and getting and keeping a job is presented. 3 hours of lecture per week. Prerequisite: Sophomore standing and permission.

VET-2070 Pharmacology and Toxicology (3)

Fall

Calculation of drug doses, dispensing and administration of medications are reviewed. The metabolism of commonly-used veterinary medications and their beneficial and potential harmful effects on the body are covered. Students become familiar with common poisonous substances and plants and gain information on assisting the veterinarian in treating toxicity cases. 3 hours of lecture per week. Prerequisite: VET-1020, 1040, 1060.

VET-2080 Animal Behavior (2)

Spring

This course is designed to give veterinary technology students grounding in the natural behaviors of the common domestic species. Included are the neural, genetic, and endocrine bases for these behaviors. In addition, many aspects of clinical behavioral medicine also are covered. Included are patient history taking, reviews of common behavioral problems of dogs and cats, patient evaluation, behavior modification, and drug therapy. 2 hours of lecture per week. Prerequisite: Sophomore standing or permission.

VET-2090 Veterinary Technician National Exam Seminar (1)

Spring

This course is a comprehensive review of the core curriculum material presented in the first three semesters of the veterinary technician program. The purpose is to prepare students for standardized professional examinations, such as the Veterinary Technician National Exam (VTNE). 1 hour of seminar each week. Prerequisites: VET-2070 and VET-2011 or permission.

VET-2720 Veterinary Supervisor (1)

Fall/Spring

Required course for Veterinary Technology students. Prerequisite: Sophomore status and two semesters of animal care. This course is repeatable for credit.

VET-2810 Vet Externship (1)

Summer

Students are enrolled in the externship after successful completion of the first-year core curriculum. The externship is a summer practicum of a minimum of 400 hours (10 weeks). It is recommended that the student attend two different sites for 5 weeks each to get a broad range of experiences. Successful completion of the externship required for graduation. Prerequisite: Permission.
Vermont Tech People

Vermont State Colleges Board of Trustees

Governor, State of Vermont (Ex Officio)

James Douglas

March 1, 2001-February 28, 2007 (6-Year Term)

Michael Audet...Orwell
Marie Duquette ...Stowe
Bonnie Johnson-Aten ...Montpelier

March 1, 2006-February 28, 2010 (4-Year Term)

Rep. William Aswad ..Burlington
Sen. Richard Marron, Vice Chair ..Stowe

March 1, 2005-February 28, 2011 (6-Year Term)

Frank A. Mazza, Sr., Secretary ..Brandon
Martha A. O’Connor, Treasurer ...Brattleboro
Karen Luneau ..St. Albans

March 1, 2004-February 28, 2008 (4-Year Term)

Donald Collins ..Swanton
George Cross ...Winooski

March 1, 2003-February 28, 2009 (6-Year Term)

Linda Milne ..Montpelier
Gary Moore, Chair ...Bradford
Charles Bucknam ...East Hardwick

June 1, 2006-May 31, 2007 (1-Year Term, Student Representative)

Matt Daubensteck ...Johnson State College
Administration

Ty J. Handy
-President
B.S., Western Kentucky University
M.B.A., Drexel University
Ed.D., University of Memphis

President’s Cabinet

John C. Daniels
-Dean of Administration and Business Manager
B.A., Kansas Wesleyan University
M.P.A., University of Arizona
M.S.Ed., University of Southern California

Patricia Menchini, R.N., M.S.N.
-Interim Dean of Academic Affairs
B.S.N., Wagner College
M.S., Russell Sage College

Thomas Raffensperger
-Associate Dean of Library and Information Services
B.A., State University of New York
M.L.I.S., University of Hawaii

Brent Sargent
-Dean, Northwest Region
B.A., St. Michael’s College
M.A., University of Vermont
Ph.D., University of Sarasota

Michael Van Dyke
-Dean of the College
B.A., Ithaca College
M.Ed., Springfield College

Administrators

James Allen
-Reference Librarian
B.A., Keene State College
M.L.I.S., University of Rhode Island

George Ambrose
-Education and Training Manager, Technology Extension Division
B.S., University of Vermont
M.S., University of Vermont
Ed.D., Vanderbilt University

Pamela Gandin Ankuda
-Director of Human Resources
B.A. University of Vermont

Faye Bacon
-Director, Respiratory Therapy
B.A. Indiana University
M.Ed., Trinity College
Resp. Ther. Specialty, Northwestern Medical School

Christopher Beattie
-I.T./Facilities Administrator
B.S., Southern Illinois University

Jeffrey Bickford
- Resident Director
B.A., Plymouth State College

Christine Black
-Director of Business Services
A.A., Luther College
B.A. Gordon College

Karry Booska
-Admissions Assistant
B.S., Vermont Technical College

Dan Boyce
-Academic Skills Coordinator
B.A., Manhattanville College
B.A., Johnson State College
M.A., Johnson State College
Carol Buchdahl
Education and Training Manager, Technology Extension Division
R.N., University of Vermont
B.S., Johnson State College
M.A., Johnson State College

Charles Cassidy
Assistant Director of Physical Plant
A.E., Vermont Technical College
B.S., Castleton State College

Charles Castelli
Director, TRIO/SSS
B.S., Goddard College
M.S., Hunter College

Bonnie Chamberlin
Education and Training Manager, Technology Extension Division
B.A., Vermont College of Norwich University
M.A., Vermont College of Norwich University

Jill Marie Chapleau
Veterinary Technician
A.A.S. Vermont Technical College

Carol Chase
Assistant to the Dean of Administration

Jean-Marie Clark
Assistant to the Dean/Northwest Region
B.A., Rivier College
M.S.A., St. Michael's College

Carrie Clement
Assistant to the President, Office of Alumni Affairs
A.A.S., Vermont Technical College

Dwight Cross
Assistant Dean of Enrollment
B.A., Norwich University

Leslie R. Daniels
Director of Student Accounts
A.A.S., Johnson & Wales College

Michael Dempsey
Registrar
B.S., Johnson State College
M.P.A., Golden Gate University

Rosemary W. Distel
Assistant Dean of Retention
A.A.S., Vermont Technical College
B.S., University of Vermont
M.A.Ed., Castleton State College

Eileen Donovan
Director of Accounting Services
B.S., University of Vermont

Paul Evans
Senior Helpdesk
A.E., Vermont Technical College

Amy Ferris
Tech Prep Coordinator
A.A.S., Vermont Technical College
B.A., Johnson State College

Emile Fredette
Director of Security & Safety

Robert Fredricksen
Senior Helpdesk
A.E., Vermont Technical College

Susan A. Fredette
Assistant Director of Admissions
A.A.S., Vermont Technical College

Christy Fry
Assistant Director of Admissions
B.A., Mansfield University
M.A. School for International Training

James Gagnon
Resident Director
B.A., Marist College

Anna Gerac
Interim Director, Nursing Program
B.S.N., University of Southwest Louisiana
M.S.N., University of California at San Francisco
Robin Goodall
Learning Specialist
B.S., University of Vermont

Ben Johnson
Electronic Services Librarian
B.L.S., Boston University
M.L.I.S., University of Oklahoma

Ellen B. Grimes, R.D.H.
Director, Dental Hygiene
B.S., University of Bridgeport
M.A., Montclair State University
M.P.A., University of Vermont
Ed.D., University of Vermont

Mary Kathryn Juskiewicz
Director of Student Life
B.A., Emmanuel College
M.Ed., Northeastern University

Nancy Guild
Assistant to the Dean of the College

Clifford LaPlante
Site Director, Brattleboro Nursing Site
R.N., University of Phoenix

Maureen Hebert
Education and Training Manager, Technology Extension Division
B.A., University of Vermont
M.P.A., University of Vermont

Sean LaRock
Laboratory Technician-Electrical

Margaret Laughlin
Site Director Nursing, Fanny Allen/Williston Campus & External Nursing Programs
B.A., SUNY Stonybrook
B.S.N., SUNY Downstate Medical Center
M.P.A., New York University

Lisa Helme
Director of Marketing and Community Relations
B.A., Colorado State University

Robert Liebman
Personal Counselor
B.S., Florida State University
M.S.W., San Diego State University

Angela Hildenbrand
Coordinator of Student Accounts
A.A.S., Vermont Technical College

Judy Luce
Assistant Director of Financial Aid

Lynn Howe
Director, Payroll and Benefits

Robert Martin
Math/Science Skills Specialist
B.A., University of Vermont

Zina Howe
Landscape/Horticulture Technician
A.A.S., Vermont Technical College

Theodore Manazir
Director, Physical Plant
B.S., University of Vermont

Polly Hunt
Accounts Payable Supervisor

Jennifer McConnell
Education and Training Manager, Technology Extension Division
B.A., Castleton State College
M.Ed., Antioch New England

Kristin Husher, R.N.
Site Director, Nursing/Extended Campus
A.A.S., University of Vermont
B.A., H.S.A., Johnson State College

Donna Imbeninato
TRIO Career/Transfer Counselor
A.A., Essex County College
B.A., Stockton State College
M.Ed., University of Vermont
Catherine McCullough
Director, Financial Aid Office
B.A., Johnson State College

Mary McMahon, R.N.
Site Director, Practical Nursing, Putnam / Bennington Campus
B.S., Castleton State College
M.S., Russell Sage College

Diana Mellar
Associate Director of Admissions
B.S., Austin Peay State University
M.B.A., Franklin Pierce College

Mary O’Brien
Director of Professional Development
B.S., Castleton State College
M.A., Johnson State College

Mary Jane Palmer
Financial Analyst
A.S., Northampton Jr. College
B.S., Johnson State College

John Paterson
Assistant Director, Technology Extension Division
B.A., University of Vermont
M.S., University of Southern Maine

Douglas Pennington
Laboratory Technician AB/Civil
B.S., University of Hartford

Katharine Perkins
MSUB Director
B.A., Middlebury College
M.A.T., Webster College

Deborah Raad
Assistant to the Academic Dean
B.A., Vermont College of Norwich University

Robert Royce
Laboratory Technician ET
A.A.S., Vermont Technical College

Shelly Russ
Assistant Registrar

Emma Schumann
Executive Assistant to the President

Chris Seguin
Assistant Chief Technical Officer
B.S., Vermont Technical College

Christopher Smith
Resident Director
B.A., Green Mountain College
M.F.A., Goddard College

Maureen Start
MSUB Assistant Director
B.S., University of Vermont

Lauri Sybel
Director of Career Development
B.S.W., Salem State College
M.A., Northeastern University

Terri Taylor
Education and Training Manager, Technology Extension Division

Julie Taylor
Technical Services Librarian
B.A., University of Vermont

Mary Waldo
Laboratory Technician, MET/Science
B.A., University of Vermont
S.A., Peace Corps, Colombia

Michael Wooden
Academic Scheduler
B.A., Gettysburg College

Carrie Wright
Site Administrator/Training Specialist, Technology Extension Division
A.A.S., Vermont Technical College
B.S., Vermont Technical College
Emeritus Faculty

Byron H. Angell
Professor of Mathematics, Emeritus
B.A., University of Vermont
M.A.T., Norwich University

Calvin Blessing, D.V.M.
Professor of Agriculture, Emeritus
B.S., Lafayette College
D.V.M., Cornell University

Paul Calter
Professor of Mathematics, Emeritus
B.S., Cooper Union School of Engineering
M.S., Columbia University

Ned E. Herrin, Jr., P.E.
Professor of Civil & Environmental Engineering Technology, Emeritus
B.S.C.E., University of New Hampshire
M.S.C.E., Purdue University

Harold G. Wirtz, P.E.
Professor of Civil & Environmental Engineering Technology, Emeritus
B.S.C.E., University of Iowa
M.S., University of Wisconsin

W. Robert Wonkka
Professor of Mathematics, Emeritus
A.B., Wesleyan University
M.Ed., Harvard University

Full-time Faculty

Note: For a listing of part-time faculty, go to www.vtc.edu, click on the academic program you are interested in, then select faculty and staff in the left navigation bar. Current part-time faculty will be listed two weeks after the start of each semester.

Associate Professor, Architectural & Building
B.S., Rensselaer Polytechnic Institute
M.B.A., University of Vermont

Assistant Professor, Chair, Diesel Power Technology
B.S., University of Massachusetts , Amherst

Jenna J. Blondel (2005)
Assistant Professor, English, Humanities & Social Sciences
B.A., American University
M.A., University of Maryland
Ph.D., University of Texas

Mary Boyle (2004)
Assistant Professor, Microbiology
B.S., Washington State University
M.S.T., University of New Hampshire

Carl Brandon (1977)
Professor, Science, Aeronautical Engineering
B.S., Michigan State University
M.S., University of Massachusetts
Ph.D., University of Massachusetts
Nancy P. Budd (2000)
Associate Professor, Nursing, Thompson/Brattleboro
A.A.S., Fulton Montgomery Community College (SUNY)
B.S.N., Norwich University
M.A., Norwich University
M.S.N., Medical University of the Americas

Dawn Carleton (1996)
Professor, English, Humanities & Social Sciences
B.A., Middlebury College
M.A., Syracuse University
Ph.D., University of Miami

Peter C. Chapin (1986)
Professor, Electrical/Computer
B.S.E.E., Western New England College
M.S.E.E., University of Illinois

Catherine Clark (1997)
Associate Professor, Nursing
R.N., Jeanne Mance School of Nursing
B.S., M.Ed., University of Vermont

Associate Professor, Architectural & Building
B.S., M. of Architecture, University of Michigan

J. Mark Corrao (1976)
Professor, Electrical/Computer
B.S.E.E., University of Maine
M.S.E.E., Purdue University

Craig Damon (2006)
Assistant Professor, Program Coordinator IT/SE
B.A., Bowdoin College
Ph.D., Carnegie Mellon University

Linda Davis (1989)
Professor, Mathematics
B.S., SUNY
M.A., Norwich University

Elizabeth Derouchie (1995)
Associate Professor, Nursing, Fanny Allen/Williston
A.D., B.S.N., University of Vermont
M.Ed., St. Michael’s College

John Diebold (2005)
Assistant Professor, Civil & Environmental
A.A.S., Vermont Technical College
B.S., Norwich University
M.S., University of Vermont

Elizabeth Dorries (1991)
Professor & Chair, Automotive Technology
B.A., Vermont College/Norwich University

Margaret Drown (2003)
Faculty Librarian, Assistant Professor
B.A., Johnson State College
M.L.I.S., Simmons College

Janet S. Dupont (2000)
Assistant Professor, Nursing, Fanny Allen/Williston
B.S., Houghton College
B.S.N., University of Vermont
M.Ed., St. Michael’s College

Christopher Dutton, D.V.M. (2005)
Assistant Professor, Agriculture
B.A., Middlebury College
D.V.M., University of Pennsylvania School of Veterinary Medicine

Ralph Esposito (2002)
Associate Professor, Electrical/Computer
B.E.E., Villanova University
Sc.M., Brown University
Ph.D., Brown University

Mary Findley (2006)
Visiting Ranked Professor, English, Humanities & Social Sciences
B.A., Southern Vermont College
M.A., Norwich University

215
Assistant Professor, Electrical/Computer
B.S., University of Vermont
Ph.D., Dartmouth College

Ann Gnagey (1997)
Sabbatical 2006 Fall Semester
Associate Professor, Bioscience
B.S., Indiana University of Pennsylvania
B.S., Ohio State University
Ph.D., Ohio State University

Joan Richmond Hall, (2001)
Assistant Professor, Science
A.B., Smith College
Ph.D., Boston University

Paul D. Hartmann, AIA (1985)
Sabbatical 2005-2006 school term
Professor, Architectural & Building
B.S., M. of Architecture, University of Michigan

Jeffrey Higgins (1987)
Professor, English, Humanities & Social Sciences
B.S., SUNY Plattsburgh
M.S., Iowa State University
Ed.D., University of Vermont

Assistant Professor, Dental Hygiene
B.S., University of Vermont
M.Ed., University of Vermont

Roger L. Howes (1999)
Associate Professor, Mechanical
B.A., Dartmouth College

Gregory Hughes (1991)
Professor, Business Technology & Management/Ombudsperson
B.S., Villanova University
M.B.A., University of Vermont
J.D., Vermont Law School

David B. Jarmy (1979)
Professor, Electrical/Computer
B.S., University of Wales, College of Swansea

Associate Professor & Chair, Mechanical
B.A., Occidental College
M.S., University of Vermont
Ph.D., University of Washington

John H. Knox (1972)
Professor & Chair, Mathematics
B.S., Norwich University
M.A., University of Vermont

Jason LaCroix (2004)
Assistant Professor, Mathematics
B.A., Western New England College
M.S., University of Vermont

George E. Longenecker (2001)
Assistant Professor, English, Humanities & Social Sciences
B.A., University of Kansas
M.A. and Secondary Education Licensure, Vermont College of Norwich University

Michael Marceau (2002)
Assistant Professor & Co-Chair, Electrical/Computer
B.S., University of Vermont
M.S., University of Vermont

Assistant Professor, Dental Hygiene
B.S., University of Vermont
M.Ed., University of Vermont

Professor & Chair, Mechanical
B.S.M.E., Tulane University

Professor & Chair, Architectural & Building
B.S., Kansas State University
M.A., California State University
M.A., Norwich University
Russell Mills (1981)
Professor, English, Humanities & Social Sciences
B.A., Wesleyan University
Ph.D., Indiana University

John Thomas Murphy, PE (2001)
Associate Professor, Electrical/Computer
B.S., Pennsylvania State University
M.S., Pennsylvania State University
M.A., The Vermont College of Norwich University

Terrence L. Murphy (1986)
Professor, Architectural & Building
B.S., State University College of Oswego
M.A. of Architecture, University of Buffalo

Andrew Myrick (2005)
Assistant Professor, Program Coordinator Construction Management
B.S., University of Vermont
M.A., University of Vermont

Professor, Science
B.S., University of New Hampshire
M.S., Michigan State University

Lorinda L. Oliver (1997)
Assistant Professor, Business Technology & Management
A.S., B.S., Johnson & Wales University

Assistant Professor, Dental Hygiene
B.S., University of Vermont
M.Ed., University of Vermont

Philip W. Petty (1980)
Professor & Chair, Agriculture
B.A., University of Vermont
M.S., Michigan State University

David F. Pollock (1989)
Professor & Chair, Science Department
B.S., Bishop’s University
Ph.D., McMaster University

Anna Poprowski (2004)
Assistant Professor, Electrical/Computer
B.S., Pennsylvania State University
M.S., Pennsylvania State University
M.S., University of Vermont

Associate Professor & Chair, Civil & Environmental
B.S., University of Alabama

Meredith Roberts (2004)
Assistant Professor, Nursing
B.A., Salem College
B.S.N., George Mason University
M.S.N., University of Phoenix

Deborah Robinson, R.N. (1994)
Associate Professor, Nursing
B.S.N., University of Vermont
M.S.N., University of Phoenix

Professor, Civil & Environmental
B.S., Manhattan College
M.S., Rutgers University

Associate Professor, Architectural & Building
B.A., B.E., Dartmouth College
M.S., Pennsylvania State University

Professor, Civil & Environmental
B.S., University of Vermont
M.S., University of Massachusetts
Ph.D., University of Michigan

Amy W. Sharpe (1994)
Professor, Mathematics
B.S., Clarkson College of Technology
M.S., University of Vermont
Graduate Research, Dartmouth College
Secondary Education Licensure,
Vermont College of Norwich University
Sarah Silbert (2000)
Assistant Professor, English, Humanities & Social Sciences
B.A., Harvard-Radcliffe University
M.F.A., Bennington College

Pamela E. Smith (1994)
Associate Professor, Agriculture & Business
B.F.A., Kansas City Art Institute
M. Landscape Architecture, University of Virginia

Professor, Veterinary Technology
A.A.S., Essex Agricultural & Technical Institute
B.S., University of Massachusetts
D.V.M., Purdue University School of Veterinary Medicine

Andre J. St. Denis (1982)
Sabbatical 2006-2007 school term
Professor, Electrical/Computer
B.A., SUNY Plattsburg
M.S., University of Illinois

Associate Professor, Veterinary Technology
B.S., Texas A&M University

Carolyn Stannard-Carlo (1998)
Associate Professor, Nursing, Putnam/Bennington
B.S., SUNY Plattsburgh
M.S., SUNY, Institute of Technology at Utica/Rome

Carroll Stokes (1998)
Assistant Professor, Science
B.S., Johnson State College

Kate Suchman (2006)
Assistant Professor, Nursing
B.S.N., Columbia University School of Nursing

Joyce Twing (1989)
Professor & Chair, Business
A.A.S., Berkshire Christian College
B.S., Central Connecticut State College

Kenneth J. Vandermark (1985)
Sabbatical 2006-2007 school term
Professor, Electrical/Computer
B.S., Clarkson College of Technology
M.S., Rensselaer Polytechnic Institute

Richard R. Warren (1997)
Associate Professor, Electrical/Computer
B.S., Norwich University
M.Eng., Cornell University

Mary Louise Young, R.N. (1994)
Associate Professor, Nursing, Putnam/Bennington
B.S.N., Castleton State College
M.S.N., University of Vermont

Matthew Zimet (1984)
Professor, Science
B.S., SUNY Stony Brook
M.S., Ph.D., University of Massachusetts
Staff

Nancy Aitken
Acquisitions Coordinator
A.A., St. Petersburg Junior College
B.A., University of Southern Florida

Jean Alexander
Accounting Specialist II, Business Office

Ralph Allen
Maintenance Technician, Physical Plant

Susan Benson
Financial Aid Specialist II

Gordon D. Burch
Custodian/Housekeeper, Physical Plant

Sibeles Burrell
Custodian/Housekeeper, Physical Plant

Michael Chase
Farm Technician

Linda Chesaux
Administrative Assistant
B.A., State University of New York

Thor E. Christensen
Security Officer

Susan Clifford
Staff Assistant, LPN Site

Beverly Cloutier
Office Manager, Williston Campus

Frederick Collins
Security Officer

Charles Dana
Farm/Cemetery Worker

Erica Dana
Mailroom & Switchboard Supervisor / Receptionist

Beth Danaher
Administrative Assistant, Student Support Center

Dominic Delia
Security Office II

Ethel Desjarden
Records Specialist III, Registrar
A.A.S., Small Business, VTC
A.A.S., Vet Tech, VTC
B.S., State University of New York

Andrea Donahue-Smith
MSUB Administrative Assistant

Robert B. Durkee
Maintenance Technician, Cemetery/Physical Plant

Anthony Emerson
Custodian/Housekeeper, Physical Plant

Nick D. Farrington
Grounds Supervisor, Physical Plant

Debra Frank
Custodian/Housekeeper II, Physical Plant

Jo Ann Gaye
Administrative Assistant, Dental Hygiene

Michael Guild
Custodian/Housekeeper, Physical Plant

Joe Henault
Security Officer

Ann Howard
Public Services Specialist-Hartness
B.A., Castleton State College

Clark B. Hunt
Mechanic Systems Technician, Physical Plant
Jonathan Keith
Security Officer

Violeta Kribstock
Custodian/Housekeeper, Physical Plant

Rebecca Lafferty
Circulation Coordinator

Caitlin Lange
Office Manager, Williston
B.S., Colorado State University

Cecilia Legacy
Custodian/Housekeeper, Physical Plant

Leigh Lyon
Custodian/Housekeeper, Physical Plant

Marc McPhetres
Vehicle Mechanic, Physical Plant

Thomas Milne
Custodian/Housekeeper, Physical Plant

Bruce Mitchell
Security Officer

Denise Taff
Staff Assistant, Nursing Program
Director–Bennington Campus

Mary Jeanne Taylor
Conference Coordinator

Michael Taylor
Remote Access Services Coordinator

Karen Tetreault
Staff Assistant, Physical Plant

Ingrid Van Steamburg
Administrative Assistant, Academic Affairs

Donna Vince
Custodian/Housekeeper, Physical Plant

Joe Vince
Custodian/Housekeeper, Physical Plant

Ronald Wallen
Maintenance Technician II

John Palmer
Security Officer

David Race
Mechanical Systems Technician

Gary Rogler
Security Officer

Rita Rotta
Custodian/Housekeeper, Physical Plant

Sandra Sargent
Administrative Assistant

Krystal Stearns
Accounting Specialist II, Business Office
Professional Tutors
Ann Adsem
Jeanette Andrews
Dorothy Barrett (5+ yrs. service)
Pamela Burns
Melanie Anne Burroughs
Keara Cahill
Barbara Cain (5+ yrs. service)
Maria Calamia (15+ yrs. service)
Paul Capriola (5+ yrs. service)
Sally Caron
Jill Chapleau
Christine Chioffi
Andrea Crockett
Charles Degenkolb
Laurie Despans
Brett Eagan
J.R. Ellsworth
Carleen Greeno
Shari Hancock
Sara Hand (5+ yrs. service)
LeeAnne Heeremans
Mary Henning (5+ yrs. service)
Steven Hurd
Meenal Joshi
James Lawrence (15+ yrs. service)
Samuel Liss (5+ yrs. service)
Sean O’Connell
Kathleen Oprea
Nicole Paquette
Sarah Phippen
Stephen Polak
Daniel Pritchard
Mary Putnam
Jennie Sloan
Steven Thomas
David Tabor (15+ yrs. service)
Thomas Teixeira
Maureen Thompson
Denise Wilder
Stacy Wissman

Advisory Committees

Agribusiness Management/Dairy Farm Management Technology

Richard Bartholomew DVM
Fairfax, Vermont

Vickie Carson
Harkdale Farm
Newbury, Vermont

Ransom Conant
Riverview Farm
Richmond, Vermont

Brett Denny
VT DHIA

Michael Farmer
Yankee Farm Credit
St. Albans, Vermont

Ted Foster
Foster Bros. Farm
Middlebury, Vermont

Dan Gingue ‘00
Gingue Farm
St. Johnsbury, Vermont

Kenneth Leach
UVM Extension
Rutland, Vermont
Architectural & Building Engineering Technology

David Boehm
Engineering Ventures, Inc.
Burlington, Vermont

Terrence J. Boyle
T. J. Boyle & Associates
Burlington, Vermont

David Burley
Vermont Department of State Buildings
Montpelier, Vermont

Amy Patenaude ‘96
Dufresne Henry
Williston, Vermont

John Rahill, AIA
Black River Design
Montpelier, Vermont

Terry Reynolds
Control Technology
Burlington, Vermont

G. William Root, Jr., P.E.
Vice President, GWR Engineering, P.C.
Shelburne, Vermont

Susan Sytsma ‘80
Susan Sytsma Design
Randolph, Vermont

Patrick Zachary ‘92
IBM
Essex Junction, Vermont

Automotive Technology

Kris Carlson
Snap On Tools
Shelburne, Vermont

Bob Cody, Jr.
Cody Chevrolet
Montpelier, Vermont

Lane Dexter
Walker Motors Inc.
Montpelier, Vermont

Chuck Haynes
Montpelier, Vermont

Marilyn Miller
Vermont Automobile Dealers Assn.
Montpelier, Vermont

Tom Moye
Vermont Agency of Natural Resources,
Air Pollution Control Division
Waterbury, Vermont

Eileen Nooney
Lewis Motors
South Burlington, Vermont

Rob Palmer ‘93
Palmer Automotive
Randolph Center, Vermont

Don Silloway
Especially Imports
Randolph, Vermont

Kip Stockwell ‘95
Stockwell’s Repair
Randolph, Vermont

Dave Thurber ‘92
Barre, Vermont

Chip Tremper
AutoCraftsmen
Montpelier, Vermont

Gerry Whitney
South Burlington Chrysler
South Burlington, Vermont
Business Technology & Management

Steve Beaulieu
Sentinel Funds, Inc.
Montpelier, Vermont

Paula Davis ’93
Health Concepts, Inc.
Saratoga, New York

Jackie Hawkins
Chittenden Bank
Burlington, Vermont

Donald Kelpinski
Vermont Small Business Development Center
Randolph Center, Vermont

Joyce LaRosa
National Life of Vermont
Montpelier, Vermont

Jennifer McConnell
General Dynamics
Burlington, Vermont

Bruce MacDonald
Vermont Pure Springs
Randolph, Vermont

Frank G. McDougall, Jr.
Dartmouth-Hitchcock Medical Center
Lebanon, New Hampshire

Connie Peck
Blue Cross & Blue Shield of Vermont
Berlin, Vermont

David Sanguinetti
National Life of Vermont
Montpelier, Vermont

Thomas Vermette ‘91
Vermont State Employees Credit Union
Montpelier, Vermont

Civil/Environmental Engineering Technology

Paul Beyor ‘75
Vermont Agency of Transportation
Montpelier, Vermont

John D. Forcier, P.E.
Forcier, Aldrich & Associates
Williston, Vermont

Patricia Kules, R.L.S.
Little River Survey Company
Stowe, Vermont

William Kules, P.E.
Little River Survey Company
Stowe, Vermont

Steven E. Mackenzie, P.E.
DuBois & King, Inc.
Randolph, Vermont

Gary A. Santy, P.E. ‘78
Project Manager, Transportation Division,
Dufresne-Henry
South Burlington, Vermont

John Stevens
Department of Engineering and Technology,
Norwich University
Northfield, Vermont

Computer Engineering Technology

Carol Bloomhardt
Manager, Software & Controls,
General Dynamics Armament and Technical Products
Burlington, Vermont

Rich Cohen
Vice President of Research & Development,
Novel, Inc.
Hanover, New Hampshire
Justin Cozzens
Software Engineer,
IDX Corporation
Shelburne, Vermont

Michael G. Eastman ‘85
Associate Professor,
Electrical Engineering Technology,
College of Applied Science & Technology,
Rochester Institute of Technology
Rochester, New York

Tom Haviland
Software Group Team Leader,
Suss Microtech, Inc.
Waterbury Center, Vermont

Lou Krieg
President,
Green Mountain Software Corp.
Colchester, Vermont

Michael Martel ‘94
Technical Support Specialist,
Vermont State Colleges
Waterbury, Vermont

Jeanne Trinko Mechler
Senior ASIC Applications Engineer,
IBM Microelectronics
Essex Junction, Vermont

David Potter ‘87
Vice President,
Data Innovations, Inc.
South Burlington, Vermont

Randall Sybel
Nestor Traffic Systems
Providence, Rhode Island

John Willey
Vice President of Sales,
Vermont Systems
Williston, Vermont

Construction Practice & Management

Mark Albee
Albee O’Hara Inc.
South Royalton, Vermont

William Berry ‘00
Casella Corporation
Mendon, Vermont

David Bogue
Professional Construction
Colchester, Vermont

Harold D. Campbell ‘98
Highgate Springs, Vermont

James Carabell
Pizzagalli Construction Co.
Burlington, Vermont

John Connor
Connor Contracting, Inc.
Berlin, Vermont

Chad Contaldi ‘97 ‘99
Miller Construction, Inc.
Windsor, Vermont

Chuck Huizenga
New England Air Systems, Inc.
Williston, Vermont

Craig Jennings ‘97
John A. Russell Corporation
Rutland, Vermont

Mark Neagley
Neagley and Chase Construction Co.
Burlington, Vermont

James Richardson
Director of Engineering & Construction
Vermont Department of State Buildings
Montpelier, Vermont
Dental Hygiene

- **Paul Averill, DDS**
 Burlington, Vermont

- **Stephen W. Barclay, DMD**
 Burlington, Vermont

- **Kelley Charland, RDH, BS**
 Essex Junction, Vermont

- **Jacqueline Kelly, RDH**
 Wolcott, Vermont

- **Lindi Liimataimen, RDH**
 Barre, Vermont

- **Robert Marshall, DDS**
 Montpelier, Vermont

- **Michelle Pinders, SDH**
 Springfield, Vermont

- **Brian Shuman, DMD**
 Burlington, Vermont

- **Patricia Trahan, SDH**
 St. Albans, Vermont

Diesel Power Technology

- **Jim Benoit**
 Munson Earth Moving Corporation
 Williston, Vermont

- **Ward Butler**
 Milton Cat, Inc. (Southworth-Milton Inc.)
 Richmond, Vermont

- **Bill Bear**
 Beare Ltd
 Barre, Vermont

- **Steve Myers**
 SD Ireland Construction Company
 Burlington, Vermont
David Nourse
Chittenden Bank
Middlebury, Vermont

A. J. Piper
A. J. Piper Construction Company
Weybridge, Vermont

Steve Root
J&B International Trucks
Colchester, Vermont

John Seeley
Seeley Construction Company
Middlebury, Vermont

Matthew Severy
Private Trucking Contractor
Middlebury, Vermont

Mike Sheldon ‘79
Vermont Mack
Williston, Vermont

Dave Stebbins
Green Mountain Kenworth
Shelburne, Vermont

Bill Sullivan
Hertz Truck Rental
Williston, Vermont

Bill Townsend
JP Carrara and Sons, Inc
Middlebury, Vermont

Albert White
White Trucking
Williston, Vermont

Bobby Wood
CRW-Woods
Williston, Vermont

Electrical Engineering Technology

Carol Bloomhardt
General Dynamics
Burlington, Vermont

John Butterfield, P.E.
Vice President, Hallam Associates
South Burlington, Vermont

Susan Haigh
FAA
South Burlington, Vermont

Bill McGrath, ‘97 & ‘99
LED Dynamics
North Rochester, Vermont

Jayson Mevmer
IBM Corporation
Essex Junction, Vermont

Ward Nial
Goodrich, Inc.
Vergennes, Vermont

Tate Picard
Hypertherm Inc.
Hanover, New Hampshire

Bruce Pilvelait
Creare
Hanover, New Hampshire

Chris Tall
NRG Systems, Inc.
Hinesburg, Vermont

George Webster
General Dynamics
Burlington, Vermont
Electromechanical Engineering Technology

Brian Bessette
Hazelett Strip Casting
Colchester, Vermont

John Butterfield, P.E.
Vice President, Hallam Associates
South Burlington, Vermont

David Hoffman ‘95 & ‘97
Kingsbury Corporation
Keene, New Hampshire

John Knapp
Husky Injection Molding
Moulton, Vermont

Bill McGrath, ‘97 & ‘99
LED Dynamics
North Rochester, Vermont

Ward Nial
Goodrich, Inc.
Vergennes, Vermont

Shawn Noel, ’05
Kingsbury Corp.
Keene, New Hampshire

Jeff Petter
Northern Power
Waitsfield, Vermont

Terrence Reynolds
Control Technologies
South Burlington, Vermont

Shawn Ricker, ’04
Applied Research Associates
South Royalton, Vermont

Chris Tall
NRG Systems, Inc.
Hinesburg, Vermont

George Webster
General Dynamics
Burlington, Vermont

Landscape Development & Ornamental Horticulture

Eileen Ahern
Dandelion Acres
Bethel, Vermont

VJ Comai
South Forty Nursery
Shelburne, Vermont

Robin Hall ‘01
Woodstock Firefly Design
Woodstock, Vermont

Henry Homeyer
Cornish Flat, New Hampshire

Mark Nevin
Windham Regional Career Center
Brattleboro, Vermont

Jack Rossi
Strafford, Vermont

Kirsten Seibert
Broadleaf Landscape Architecture
Waitsfield, Vermont

Paul Sokal
Addison Gardens
Panton, Vermont

Dr. Mark Starrett
Plant & Soil Science Department,
University of Vermont
Burlington, Vermont
Mechanical Engineering Technology

Jonathan Bicknell ‘98
Concepts NREC
White River Junction, Vermont

Michael Boudreau
Sterling Technologies
Morrisville, Vermont

John Currier
Dartmouth College
Hanover, New Hampshire

Charlie Dykes
Hazelett Strip Casting
Colchester, Vermont

Dana Howe ‘99
G. W. Plastics
Bethel, Vermont

Brian Lund
Energizer
St. Albans, Vermont

Dave Meyer
Suss MicroTec Inc.
Waterbury Center, Vermont

Jim Shinn
Applied Research Assoc.
South Royalton, Vermont

Ryan Whitney ‘98
Edlund Corp.
Burlington, Vermont

Lynne Carpenter, RN
Med-Surg Nursing Educator,
Central Vermont Medical Center
Barre, Vermont

Janice Giles, RN ‘01
Gifford Medical Center
Randolph, Vermont

Katrin Helgason
Vermont Interactive Television (VIT)

Jeffrey Kaiser, RN ‘98 & ’99
Emergency Department,
Central Vermont Medical Center
Berlin, Vermont

Sarah W. Kenealy RN, MA
Mental Health Counselor
Licensed Clinical
Randolph, Vermont

Linda Minsinger, RN, MEd, MS
Vice President of Patient Care Services,
Gifford Medical Center
Randolph, Vermont

Joan Potter, RN
Director of Nursing,
Woodridge Nursing Home
Barre, Vermont

Marilyn Rinker, RN, MSN, APN
Program Chair, Department of Nursing
Norwich University
Northfield, Vermont

Helen Spring
Vice President of Patient Care Services,
Central Vermont Medical Center
Barre, Vermont

Nursing Programs
Randolph Center Campus

Kenneth G. Borie, DO
Gifford Medical Center
Randolph, Vermont
Fanny Allen/Williston Campus

Linda Brownell
Vermont Interactive Television (VIT)

Erin Fitzgerald
Colchester, Vermont

Susan Fortin
Director of Nursing,
Birchwood Terrace Healthcare
Burlington, Vermont

Christine Hardcastle
Administrator,
Green Mountain Nursing Home
Colchester, Vermont

Nancy Natvig
Team Manager, Visiting Nurse Assn.
Burlington, Vermont

Ellen Reed, RN
St. Albans, Vermont

Peggy Sharpe
Charlotte, Vermont

Kathleen Tabor, RN
Chief Nursing Office,
Northwestern Medical Center
St. Albans, Vermont

Laurey Tyo, RN
Clinical Nurse Coordinator
Central Vermont Medical Center

Gail Washburn, RN
Clinical Nurse Coordinator
Central Vermont Medical Center

Putnam/Bennington Campus

Darlene Blanchette
Centers for Living and Rehabilitation
Bennington, Vermont

Walter Deinzer
VIT Regional Manager
Rutland, Vermont

Millie Dunn, RN
Manchester Center, Vermont

Janice Garrison, LPN ‘02
Arlington, Vermont

Craig Ghidotti
Vice President, Human Resources,
Southwestern VT Health Care Corp.
Bennington, Vermont

Gail Hanlon
Nursing Education,
Southwestern Vermont Medical Center
Bennington, Vermont

Jean Jenkins
Community College of Vermont
Bennington, Vermont

Maureen Loy, RN
Bennington, Vermont

Colleen Macksey
Bennington, Vermont

Karen Mueller
Nurse Mgr. 2 East/2 West
Southwestern VT Medical Center.

Sonya Neilson, RN
Wilmington, Vermont

Kathryn Slade, RN, BSN
North Bennington, Vermont
Thompson/Brattleboro Campus

Wendy Cornwell
Brattleboro Memorial Hospital
Brattleboro, Vermont

Shannon Devereaux
VIT-Regional Site Manager
Brattleboro-Springfield-White River Junction

Heidi Gauvin
Cheshire Medical Center
Keene, New Hampshire

Margaret Knox
Cedarcrest, Inc.
Keene, New Hampshire

Peg Kondos, RN
WACHU-Cheshire Medical Center
Keene, New Hampshire

Kristine Martin, RN
Thompson House Nursing Home
Brattleboro, Vermont

Julie Merrigan
Director of Nursing
Vernon Green Nursing Home
Vernon, Vermont

Mary Oberly
VNA & Hospice of VT & NH
Brattleboro, Vermont

Helen Shea-Murphy, RN, APRN, BC
Brattleboro Retreat
Brattleboro, Vermont

Tawny Staskunas
Vermont Department of Employment & Training
Brattleboro, Vermont

Cathy Tallen
Brattleboro Memorial Hospital
Brattleboro, Vermont

Mary Urrquhart, RN
Brattleboro Memorial Hospital
Brattleboro, Vermont

Nursing–Extended Campus

Karen Sue Bent, RN
M&S Charge Nurse,
Northwestern Medical Center
St. Albans, Vermont

Penne Ciaraldi
Northeastern Regional Director,
Community College of Vermont
Newport, Vermont

Sara Gregoire
Adult Services Coordinator,
North Country Career Center
Newport, Vermont

Jill Lord
Director of Patient Care Services,
Mt. Ascutney Hospital and Health Care
Windsor, Vermont

G. Glenn Meadows, RN, CNOR, MBA,
Chief Nursing Officer,
Copley Hospital
Morrisville, Vermont

Darlene Murphy
Coordinator of Academic Services for Allied Health,
Community College of Vermont
Burlington, Vermont

Pamela Puccia
Director of Nursing,
Helen Porter Nursing Home, Inc.
Middlebury, Vermont
Susanne Sullivan, RN ‘02 & ‘03
Copley Hospital
Wolcott, Vermont

Respiratory Therapy

Skip Bangley
Director of Cardiopulmonary Services,
Rutland Regional Medical Center
Rutland, Vermont

Rick Barry
Nursing Operations
North Country Hospital
Newport, Vermont

Michelle Carner
Respiratory Therapy Manager
Northwestern Medical Center
St. Albans, Vermont

Diane Choquette
Respiratory Therapy Director
Copley Hospital
Morrisville, Vermont

Lucinda Cobb, RRT
Director of Respiratory Care,
Central Vermont Hospital
Barre, Vermont

Gerald Davis, MD
Medical Director, University of Vermont,
Department of Medicine
Burlington, Vermont

Michelle Hickey
Clinical Coordinator,
Cardiopulmonary Services,
Rutland Regional Medical Center
Rutland, Vermont

Steven Hurd
Clinical Coordinator,
Respiratory Care,
North Country Health Systems
Newport, Vermont

David Ingram
Director of Respiratory Care,
North Country Health Systems
Newport, Vermont

Patrick O’Donnell
Manager, Aprial Healthcare
South Burlington, Vermont

Donna Rush
Director of Clinical Education,
Respiratory Care Services,
Fletcher Allen Health Care
Burlington, Vermont

Bob St. Pierre
Cardio Respiratory Services
Brattleboro Memorial Hospital
Brattleboro, Vermont

Greg Ward
Manager of Respiratory Care Services,
Fletcher Allen Health Care
Burlington, Vermont

Paul Williams
Respiratory Therapy Director
Champlain Valley Physician's Hospital
Plattsburgh, New York

Veterinary Technology

Nancy Clements
Berlin Veterinary Clinic
Montpelier, Vermont

Abbey Dattilio
Neurology Department
University of Vermont
Burlington, Vermont
Terri Hodgdon
Bethel, Vermont

Ted Johnson, DVM
Vermont-New Hampshire Veterinary Clinic
East Dummerston, Vermont

Todd Johnson, DVM
U.S.D.A.- A.P.H.I.S. Veterinary Services
Montpelier, Vermont

Betsey Kelley
Randolph, Vermont

Daniel Kelly, DVM
Stonecliff Animal Clinic
Bradford, Vermont

Steven B. Metz, DVM
Shelburne Veterinary Hospital
Shelburne, Vermont

Kerry A. Rood MS, DVM
State Veterinarian
Montpelier, Vermont

Martha Rose
Butler Company
Orford, New Hampshire

Jon A. Stokes, DVM
Green Mountain Animal Hospital, LTD
South Burlington, Vermont

Rebecca Williams
Stowe, Vermont
Index

A
Academic Advising..............................29
Academic Affairs29-45
Academic Counseling..........................43
Academic Dismissal............................35
Academic Progress64
Academic Standing35, 64
Accreditation11
Add/Drop Period32
Administrators210
Admissions20
Advanced Standing28
Advisory Committees221
Aeronautical Engineering Technology24, 70, 134
Agribusiness Management Technology24, 71, 135
Appeal of Academic Dismissal..............36
Appeal of Conditions/Probation35
Applied Technology24, 67, 72
Architectural & Building/Architectural Engineering Technology24, 74, 137
Arts/Humanities Electives (AH)..............128
Athletics ..49
Attendance29
Auditing Courses31
Automobiles, Student47
Automotive Technology24, 80, 143
Awards ..40

B
Biological Science Courses145
Board (Dining Hall)50, 51, 52, 55, 58

Business Technology & Management24, 82, 147

C
Calculators57
Campus Facilities14
Care of College Property47
Career & Transfer Opportunities66
Career/Transfer Center44
Challenge Exams33
Changing Programs/Majors37
Chemistry Courses155
Civil & Environmental Engineering Technology24, 86, 152
Computer Engineering Technology24, 88, 155
Computer Information Technology24, 94, 156
Computer Science Courses155
Computer Software Engineering24, 94, 155
Computer Software Policy43
Consortium Agreement (VSC)45
Construction Practice & Management24, 100, 163
Course Descriptions132
Credit by Challenge Examination33

D
Dairy Farm Management Technology24, 102, 136
Definition of a Vermont Resident59
Dental Hygiene24, 103, 165
Deposits ..57
Diesel Power Technology24, 105, 167
Dining Hall47
Dismissal ...35
Economics Courses 168
Education Electives 169
Electrical Engineering Technology 25, 107, 171
Electromechanical Engineering Technology 25, 109, 171
Emergency Loans 49
Employment Opportunities 66
English Courses 179
Expected Family Contribution 60
Expenses 50-53
Faculty 210
Fees 50-53
FERPA .. 45
Financial Aid 60
Financial Aid Award Notification Letter 63
General Education Information 126-130
General Engineering Technology 25, 112
Grading System 30
Graduation Honors 39
Graduation Requirements 37
Health, Student 48
History Courses 181
Honor Societies 39
Honors 39
Humanities Courses 183
Incomplete Course Work 31
Independent Research/Study 184
Information Technology 24, 94, 155
Landscape Development & Ornemental Horticulture 25, 115, 184
Learning Center 44
Leave of Absence 33
Library .. 15
Location 10
MAPLE Student /Course Data 30
Management of Technology 24, 84
Mathematics Courses 187
Mechanical Engineering Technology 25, 115, 190
Multiple Programs and Majors 37
Non-degree Students 27
Non-discrimination and Equal Opportunity Policy 3
Nursing 12, 25, 118, 194
Orientation 26
Overloads (credit) 35
P
Payment Policy57
Personal Counseling43
Philosophy Courses............................197
Physics Courses198
Placement Testing20
Probation..36
Psychology Courses200

R
Refunds ..58
Registration Information......................27
Repeated Courses32
Residence Hall Occupancy47
Residential Living46
Respiratory Therapy25, 120, 200
Returning After Dismissal36
Returning Students36
Room Expense52
RSP-Approved Programs54

S
Services for Students with Disabilities44
Schedules ..30
Social Science Courses202
Social Sciences Electives (GS)129
Sources of Financial Aid61
Special Topics Courses184
Staff ..210
Stafford Loans62
Student Affairs46
Student Class Level34
Student Conduct46
Student Government49
Student Records
Review and Release Policy45
Student Right-to-Know45
Student Support Center43
Student Support Services/TRIO Program 43
Substitution of Courses34
Summer Programs28

T
Technology Extension Division11
Telecommunications
Technology25, 122, 203
Textbooks and Supplies56
Three-Year Options22
Time Limitation on Graduation Requirements ..38
Transcripts ...45
Transfer Credit2
Transfer Students66
Transfer to Bachelor’s Degree Programs69
Trustees, VSC209
Tuition & Fees50

V
Vermont Academy of Science & Technology (VAST)13
VSC Consortium Enrollment Agreement45
Veterans’ Education Benefits62
Veterinary Technology25, 124, 205

W
Waiver of Courses34
Withdrawal from a Course33
Withdrawal from VTC33, 58
Writing/Communication Center44

235
Approximate Hours of Driving Time to Vermont Tech

- Boston, MA3
- Hartford, CT3
- New York, NY6
- Albany, NY2.5
- Burlington, VT1
- Providence, RI4
- Springfield, MA2.5
- St. Johnsbury, VT1.5
- Portland, ME4
- Concord, NH2